Deep learning-based elaiosome detection in milk thistle seed for efficient high-throughput phenotyping

被引:0
作者
Kim, Younguk [1 ]
Abebe, Alebel Mekuriaw [1 ]
Kim, Jaeyoung [1 ]
Hong, Suyoung [2 ]
An, Kwanghoon [3 ]
Shim, Jeehyoung [3 ]
Baek, Jeongho [1 ]
机构
[1] Rural Dev Adm, Natl Inst Agr Sci, Gene Engn Div, Jeonju, South Korea
[2] Rural Dev Adm, Natl Inst Agr Sci, Genom Div, Jeonju, South Korea
[3] EL&I Co Ltd, Hwaseong, South Korea
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
关键词
milk thistle; elaiosome; deep learning; object detection; Detectron2; phenotyping; IMAGE; PHENOMICS;
D O I
10.3389/fpls.2024.1395558
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Milk thistle, Silybum marianum (L.), is a well-known medicinal plant used for the treatment of liver diseases due to its high content of silymarin. The seeds contain elaiosome, a fleshy structure attached to the seeds, which is believed to be a rich source of many metabolites including silymarin. Segmentation of elaiosomes using only image analysis is difficult, and this makes it impossible to quantify the elaiosome phenotypes. This study proposes a new approach for semi-automated detection and segmentation of elaiosomes in milk thistle seed using the Detectron2 deep learning algorithm. One hundred manually labeled images were used to train the initial elaiosome detection model. This model was used to predict elaiosome from new datasets, and the precise predictions were manually selected and used as new labeled images for retraining the model. Such semi-automatic image labeling, i.e., using the prediction results of the previous stage for retraining the model, allowed the production of sufficient labeled data for retraining. Finally, a total of 6,000 labeled images were used to train Detectron2 for elaiosome detection and attained a promising result. The results demonstrate the effectiveness of Detectron2 in detecting milk thistle seed elaiosomes with an accuracy of 99.9%. The proposed method automatically detects and segments elaiosome from the milk thistle seed. The predicted mask images of elaiosome were used to analyze its area as one of the seed phenotypic traits along with other seed morphological traits by image-based high-throughput phenotyping in ImageJ. Enabling high-throughput phenotyping of elaiosome and other seed morphological traits will be useful for breeding milk thistle cultivars with desirable traits.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping
    Zhou, Shuo
    Chai, Xiujuan
    Yang, Zixuan
    Wang, Hongwu
    Yang, Chenxue
    Sun, Tan
    PLANT METHODS, 2021, 17 (01)
  • [32] Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping
    Shuo Zhou
    Xiujuan Chai
    Zixuan Yang
    Hongwu Wang
    Chenxue Yang
    Tan Sun
    Plant Methods, 17
  • [33] High-throughput phenotyping and deep learning to analyze dynamic panicle growth and dissect the genetic architecture of yield formation
    Geng, Zedong
    Lu, Yunrui
    Duan, Lingfeng
    Chen, Hongfei
    Wang, Zhihao
    Zhang, Jun
    Liu, Zhi
    Wang, Xianmeng
    Zhai, Ruifang
    Ouyang, Yidan
    Yang, Wanneng
    CROP AND ENVIRONMENT, 2024, 3 (01): : 1 - 11
  • [34] Enabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations
    Song, Hengxu
    Nguyen, Binh Duong
    Govind, Kishan
    Berta, Denes
    Ispanovity, Peter Dusan
    Legros, Marc
    Sandfeld, Stefan
    ACTA MATERIALIA, 2025, 282
  • [35] Deep Learning-Based Plant Organ Segmentation and Phenotyping of Sorghum Plants Using LiDAR Point Cloud
    Patel, Ajay Kumar
    Park, Eun-Sung
    Lee, Hongseok
    Priya, G. G. Lakshmi
    Kim, Hangi
    Joshi, Rahul
    Arief, Muhammad Akbar Andi
    Kim, Moon S.
    Baek, Insuck
    Cho, Byoung-Kwan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 8492 - 8507
  • [36] Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning
    Kaushal, Swas
    Gill, Harsimardeep S.
    Billah, Mohammad Maruf
    Khan, Shahid Nawaz
    Halder, Jyotirmoy
    Bernardo, Amy
    St Amand, Paul
    Bai, Guihua
    Glover, Karl
    Maimaitijiang, Maitiniyazi
    Sehgal, Sunish K.
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [37] Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems
    Ibarra-Hernandez, Roilhi F.
    Castillo-Soria, Francisco R.
    Gutierrez, Carlos A.
    Del-Puerto-Flores, Jose Alberto
    Acosta-Elias, Jesus
    Rodriguez-Abdala, Viktor I.
    Palacios-Luengas, Leonardo
    SENSORS, 2025, 25 (03)
  • [38] High-Throughput Classification and Counting of Vegetable Soybean Pods Based on Deep Learning
    Zhang, Chenxi
    Lu, Xu
    Ma, Huimin
    Hu, Yuhao
    Zhang, Shuainan
    Ning, Xiaomei
    Hu, Jianwei
    Jiao, Jun
    AGRONOMY-BASEL, 2023, 13 (04):
  • [39] High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning
    Si Yang
    Lihua Zheng
    Peng He
    Tingting Wu
    Shi Sun
    Minjuan Wang
    Plant Methods, 17
  • [40] Development of a field-based high-throughput mobile phenotyping platform
    Barker, Jared
    Zhang, Naiqian
    Sharon, Joshua
    Steeves, Ryan
    Wang, Xu
    Wei, Yong
    Poland, Jesse
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 122 : 74 - 85