Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas

被引:2
作者
Shi, Jinge [1 ]
Chen, Yi [1 ]
Cai, Zhennao [1 ]
Heidari, Ali Asghar [2 ]
Chen, Huiling [1 ]
He, Qiuxiang [3 ]
机构
[1] Wenzhou Univ, Inst Big Data & Informat Technol, Wenzhou 325035, Peoples R China
[2] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[3] Wenzhou Med Univ, Affiliated Hosp 1, Dept Pathol, Wenzhou, Zhejiang, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 10期
基金
中国国家自然科学基金;
关键词
Whale optimization algorithm; Quantum phase; Image segmentation; 2D Renyi's entropy; Non-local means 2D histogram; PARTICLE SWARM OPTIMIZATION; GREY WOLF OPTIMIZATION; GLOBAL OPTIMIZATION; DIFFERENTIAL EVOLUTION; ALGORITHM; INTELLIGENCE; COLONY; TESTS;
D O I
10.1007/s10586-024-04644-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical imaging is essential in modern healthcare because it assists physicians in the diagnosis of cancer. Various tissues and features in medical imaging can be recognized using image segmentation algorithms. This feature makes it possible to pinpoint and define particular areas, which makes it easier to precisely locate and characterize anomalities or lesions for cancer diagnosis. Among cancers affecting women, breast cancer is particularly prevalent, underscoring the urgent need to improve the accuracy of image segmentation for breast cancer in order to assist medical practitioners. Multi-threshold image segmentation is widely acknowledged for its direct and effective characteristics. In this context, this paper suggests a refined whale optimization algorithm to improve the segmentation accuracy of breast cancer data. This algorithm optimizes performance by combining a quantum phase interference mechanism and an enhanced solution quality strategy. This work compares the method with classical, homogeneous, state-of-the-art algorithms and runs experiments on the IEEE CEC2017 benchmark to validate its practical optimization performance. Furthermore, a multi-threshold image segmentation algorithm-based image segmentation technique is presented in this study. The Berkeley segmentation dataset and the breast invasive ductal carcinomas segmentation dataset are segmented using the approach using a non-local means two-dimensional histogram and Renyi's entropy. Experimental results demonstrate the excellent performance of this segmentation method in image segmentation applications across both low and high threshold levels. As a result, it emerges as a valuable image segmentation technique with practical applications.
引用
收藏
页码:14891 / 14949
页数:59
相关论文
共 107 条
[1]   Island-based Cuckoo Search with elite opposition-based learning and multiple mutation methods for solving optimization problems [J].
Abed-alguni, Bilal H. ;
Paul, David .
SOFT COMPUTING, 2022, 26 (07) :3293-3312
[2]   Advances in Sine Cosine Algorithm: A comprehensive survey [J].
Abualigah, Laith ;
Diabat, Ali .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (04) :2567-2608
[3]   AUTOMATIC THRESHOLDING OF GRAY-LEVEL PICTURES USING TWO-DIMENSIONAL ENTROPY [J].
ABUTALEB, AS .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 47 (01) :22-32
[4]   RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method [J].
Ahmadianfar, Iman ;
Heidari, Ali Asghar ;
Gandomi, Amir H. ;
Chu, Xuefeng ;
Chen, Huiling .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 181
[5]   Multiobjective Simulated Annealing: Principles and Algorithm Variants [J].
Amine, Khalil .
ADVANCES IN OPERATIONS RESEARCH, 2019, 2019
[6]   Fast curvelet transform through genetic algorithm for multimodal medical image fusion [J].
Arif, Muhammad ;
Wang, Guojun .
SOFT COMPUTING, 2020, 24 (03) :1815-1836
[7]   Current and future burden of breast cancer: Global statistics for 2020 and 2040 [J].
Arnold, Melina ;
Morgan, Eileen ;
Rumgay, Harriet ;
Mafra, Allini ;
Singh, Deependra ;
Laversanne, Mathieu ;
Vignat, Jerome ;
Gralow, Julie R. ;
Cardoso, Fatima ;
Siesling, Sabine ;
Soerjomataram, Isabelle .
BREAST, 2022, 66 :15-23
[8]   Heap-based optimizer inspired by corporate rank hierarchy for global optimization [J].
Askari, Qamar ;
Saeed, Mehreen ;
Younas, Irfan .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 161
[9]   Discrete cuckoo search algorithms for test case prioritization [J].
Bajaj, Anu ;
Sangwan, Om Prakash .
APPLIED SOFT COMPUTING, 2021, 110
[10]  
Baudes A., 2005, NONLOCAL ALGORITHM I