Interpolation for neural-network operators activated with a generalized logistic-type function

被引:2
作者
Uyan, Hande [1 ]
Aslan, Abdullah Ozan [1 ]
Karateke, Seda [2 ]
Buyukyazici, Ibrahim [3 ]
机构
[1] Ankara Univ, Grad Sch Nat & Appl Sci, Ankara, Turkiye
[2] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Software Engn, TR-34408 Istanbul, Turkiye
[3] Ankara Univ, Fac Sci, Dept Math, Ankara, Turkiye
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2024年 / 2024卷 / 01期
关键词
Generalized logistic-type function; Neural-Network (NN) operators; Interpolation; Uniform approximation; Order of approximation; APPROXIMATION;
D O I
10.1186/s13660-024-03199-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper defines a family of neural-network interpolation operators. The first derivative of generalized logistic-type functions is considered as a density function. Using the first-order uniform approximation theorem for continuous functions defined on the finite intervals, the interpolation properties of these operators are presented. A Kantorovich-type variant of the operators Fna,epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{n}<^>{a,\varepsilon} $\end{document} is also introduced. The approximation of Kantorovich-type operators in LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{P}$\end{document} spaces with 1 <= p <=infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1 \leq p\leq \infty $\end{document} is studied. Further, different combinations of the parameters of our generalized logistic-type activation function theta s,a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta _{s, a}$\end{document} are examined to see which parameter values might give us a more efficient activation function. By choosing suitable parameters for the operator Fna,epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{n}<^>{a,\varepsilon} $\end{document} and the Kantorovich variant of the operator Fna,epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{n}<^>{a,\varepsilon} $\end{document}, the approximation of various function examples is studied.
引用
收藏
页数:18
相关论文
共 25 条