Reinforcement Learning and Biologically Inspired Artificial Neural Networks

被引:0
作者
Fiuri Ariel, M. [1 ]
Dominguez Martin, A. [1 ]
Tamarit, Francisco [1 ,2 ,3 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron Fis & Comp, Cordoba, Argentina
[2] UNC, Inst Fis Enrique Gaviola, Cordoba, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Cordoba, Argentina
来源
INFORMATION MANAGEMENT AND BIG DATA, SIMBIG 2023 | 2024年 / 2142卷
关键词
Artificial Neural Network; Reinforcement Learning; Optimization; Neural Dynamics; Biologically Inspired;
D O I
10.1007/978-3-031-63616-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the last few years, machine learning methods have used Deep Neural Network architectures to tackle complex problems. In this paper, we applied biologically inspired neural machine learning to solve two classical and well-known challenging problems, the Mountain Car Continuous and the Cart Pole. We use a neural network extracted from the connectome of C-Elegans to learn a policy able to yield a good solution. We used Reinforcement Learning (RL) and optimization techniques to train the models, in addition to proposing a novel neural dynamics model. We use different metrics to make a detailed comparison of the results obtained, combining different neuronal dynamics and optimization methods. We obtained very competitive results compared with the solution provided in the literature, particularly with the novel dynamic neuronal model.
引用
收藏
页码:62 / 79
页数:18
相关论文
共 20 条
  • [1] Barez F, 2023, Arxiv, DOI [arXiv:2304.11593, 10.48550/arXiv.2304.11593, DOI 10.48550/ARXIV.2304.11593]
  • [2] Bergstra J., 2013, INT C MACHINE LEARNI, V28, P115, DOI DOI 10.5555/3042817.3042832
  • [3] Brochu E, 2010, Arxiv, DOI [arXiv:1012.2599, DOI 10.48550/ARXIV.1012.2599, 10.48550/arxiv.1012.2599]
  • [4] Wiring optimization can relate neuronal structure and function
    Chen, BL
    Hall, DH
    Chklovskii, DB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (12) : 4723 - 4728
  • [5] Dayan P, 2005, Theoretical neuroscience: computational and mathematical modeling of neural systems
  • [6] Gad Ahmed. F., 2021, arXiv
  • [7] Haimovici A, 2013, Arxiv, DOI arXiv:1209.5353
  • [8] Simple model of spiking neurons
    Izhikevich, EM
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06): : 1569 - 1572
  • [9] Kurban R., 2019, Towards Data Science
  • [10] Lechner M, 2018, Arxiv, DOI arXiv:1803.08554