Hardy inequalities for large fermionic systems

被引:0
|
作者
Frank, Rupert L. [1 ,2 ,3 ]
Hoffmann-Ostenhof, Thomas [4 ]
Laptev, Ari [5 ,6 ]
Solovej, Jan Philip [7 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[3] CALTECH, Math 253-37, Pasadena, CA 91125 USA
[4] Univ Vienna, Dept Theoret Chem, Waehringerstr 17, A-1090 Vienna, Austria
[5] Imperial Coll London, 180 Queens Gate, London SW7 2AZ, England
[6] Sirius Univ Sci & Technol, Sirius Math Ctr, 1 Olymp Ave, Soci 354340, Russia
[7] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
Hardy inequalities; fermions; semi-classical limit; electrostatic inequalities; THOMAS-FERMI; ATOMS; COLLAPSE; DENSITY;
D O I
10.4171/JST/511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 0<s<(d)/(2 )with s <= 1, we are interested in the large N-behavior of the optimal constant kappa N in the Hardy inequality & sum;(N)(n=1)(-Delta(n))(s)>=kappa(N)& sum;(n<m)|X-n-X-m|(-2s), when restricted to antisymmetric functions. We show that N1-2s/d kappa(N) has a positive, finite limit given by a certain variational problem, thereby generalizing a result of Lieb and Yau related to the Chandrasekhar theory of gravitational collapse.
引用
收藏
页码:805 / 835
页数:31
相关论文
共 50 条