Hardy inequalities for large fermionic systems

被引:0
|
作者
Frank, Rupert L. [1 ,2 ,3 ]
Hoffmann-Ostenhof, Thomas [4 ]
Laptev, Ari [5 ,6 ]
Solovej, Jan Philip [7 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[3] CALTECH, Math 253-37, Pasadena, CA 91125 USA
[4] Univ Vienna, Dept Theoret Chem, Waehringerstr 17, A-1090 Vienna, Austria
[5] Imperial Coll London, 180 Queens Gate, London SW7 2AZ, England
[6] Sirius Univ Sci & Technol, Sirius Math Ctr, 1 Olymp Ave, Soci 354340, Russia
[7] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
Hardy inequalities; fermions; semi-classical limit; electrostatic inequalities; THOMAS-FERMI; ATOMS; COLLAPSE; DENSITY;
D O I
10.4171/JST/511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 0<s<(d)/(2 )with s <= 1, we are interested in the large N-behavior of the optimal constant kappa N in the Hardy inequality & sum;(N)(n=1)(-Delta(n))(s)>=kappa(N)& sum;(n<m)|X-n-X-m|(-2s), when restricted to antisymmetric functions. We show that N1-2s/d kappa(N) has a positive, finite limit given by a certain variational problem, thereby generalizing a result of Lieb and Yau related to the Chandrasekhar theory of gravitational collapse.
引用
收藏
页码:805 / 835
页数:31
相关论文
共 50 条
  • [21] Series expansion for Lp Hardy inequalities
    Barbatis, G
    Filippas, S
    Tertikas, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) : 171 - 190
  • [22] On fractional Orlicz-Hardy inequalities
    Anoop, T. V.
    Roy, Prosenjit
    Roy, Subhajit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [23] Relativistic Hardy Inequalities in Magnetic Fields
    Luca Fanelli
    Luis Vega
    Nicola Visciglia
    Journal of Statistical Physics, 2014, 154 : 866 - 876
  • [24] Mean field dynamics of interacting fermionic systems
    Porta, Marcello
    MATHEMATICAL PROBLEMS IN QUANTUM PHYSICS, 2018, 717 : 13 - 30
  • [25] HARDY INEQUALITIES AND CAFFARELLI-KOHN-NIRENBERG INEQUALITIES WITH RADIAL DERIVATIVE
    Tuan Duy Nguyen
    Le-Long Phi
    Yin, Weijia
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 501 - 523
  • [26] A REMARK ON HARDY TYPE INEQUALITIES WITH REMAINDER TERMS
    Alvino, Angelo
    Volpicelli, Roberta
    Volzone, Bruno
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 801 - 807
  • [27] SOME HARDY TYPE INEQUALITIES WITH FINSLER NORMS
    Nguyen Tuan Duy
    MATHEMATICA SLOVACA, 2021, 71 (02) : 317 - 330
  • [28] ABSTRACT HARDY INEQUALITIES: THE CASE p=1
    Hidalgo, Alejandro Santacruz
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 955 - 980
  • [29] Norm convergence of confined fermionic systems at zero temperature
    Cardenas, Esteban
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (02)
  • [30] WEIGHTED HARDY-TYPE INEQUALITIES IN ORLICZ SPACES
    Kalamajska, Agnieszka
    Pietruska-Paluba, Katarzyna
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 745 - 766