Hardy inequalities for large fermionic systems

被引:0
|
作者
Frank, Rupert L. [1 ,2 ,3 ]
Hoffmann-Ostenhof, Thomas [4 ]
Laptev, Ari [5 ,6 ]
Solovej, Jan Philip [7 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[3] CALTECH, Math 253-37, Pasadena, CA 91125 USA
[4] Univ Vienna, Dept Theoret Chem, Waehringerstr 17, A-1090 Vienna, Austria
[5] Imperial Coll London, 180 Queens Gate, London SW7 2AZ, England
[6] Sirius Univ Sci & Technol, Sirius Math Ctr, 1 Olymp Ave, Soci 354340, Russia
[7] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
Hardy inequalities; fermions; semi-classical limit; electrostatic inequalities; THOMAS-FERMI; ATOMS; COLLAPSE; DENSITY;
D O I
10.4171/JST/511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 0<s<(d)/(2 )with s <= 1, we are interested in the large N-behavior of the optimal constant kappa N in the Hardy inequality & sum;(N)(n=1)(-Delta(n))(s)>=kappa(N)& sum;(n<m)|X-n-X-m|(-2s), when restricted to antisymmetric functions. We show that N1-2s/d kappa(N) has a positive, finite limit given by a certain variational problem, thereby generalizing a result of Lieb and Yau related to the Chandrasekhar theory of gravitational collapse.
引用
收藏
页码:805 / 835
页数:31
相关论文
共 50 条
  • [1] Fractional Hardy-Lieb-Thirring and Related Inequalities for Interacting Systems
    Lundholm, Douglas
    Phan Thanh Nam
    Portmann, Fabian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) : 1343 - 1382
  • [2] Pointwise Hardy inequalities
    Hajlasz, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) : 417 - 423
  • [3] The semi-classical limit of large fermionic systems
    Fournais, Soren
    Lewin, Mathieu
    Solovej, Jan Philip
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [4] Anisotropic Hardy inequalities
    Della Pietra, Francesco
    di Blasio, Giuseppina
    Gavitone, Nunzia
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 483 - 498
  • [5] Hardy inequalities with homogeneous weights
    Hoffmann-Ostenhof, Thomas
    Laptev, Ari
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (11) : 3278 - 3289
  • [6] A simple approach to Hardy inequalities
    Mitidieri, E
    MATHEMATICAL NOTES, 2000, 67 (3-4) : 479 - 486
  • [7] A simple approach to Hardy inequalities
    E. Mitidieri
    Mathematical Notes, 2000, 67 : 479 - 486
  • [8] Improved Multipolar Hardy Inequalities
    Cazacu, Cristian
    Zuazua, Enrique
    STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 : 35 - 52
  • [9] Hardy type inequalities for Δλ-Laplacians
    Kogoj, Alessia E.
    Sonner, Stefanie
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 422 - 442
  • [10] On Hardy inequalities with a remainder term
    Alvino A.
    Volpicelli R.
    Volzone B.
    Ricerche di Matematica, 2010, 59 (2) : 265 - 280