Empirical limit theorems for Wiener chaos

被引:0
作者
Bai, Shuyang [1 ]
Chen, Jiemiao [1 ]
机构
[1] Univ Georgia, 310 Herty Dr, Athens, GA 30602 USA
关键词
Limit theorems; Wiener chaos; Multiple stochastic integrals; Empirical measure; Gaussian random measure; STOCHASTIC INTEGRALS; MULTIPLE; APPROXIMATION; CONVERGENCE; RESPECT;
D O I
10.1016/j.spl.2024.110222
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider empirical measures in a triangular array setup with underlying distributions varying as sample size grows. We study asymptotic properties of multiple integrals with respect to normalized empirical measures. Limit theorems involving series of multiple Wiener-Ito integrals are established.
引用
收藏
页数:10
相关论文
共 30 条
[11]  
DEHLING H, 2002, EMPIRICAL PROCESS TE, P3
[12]   SYMMETRIC STATISTICS, POISSON POINT-PROCESSES, AND MULTIPLE WIENER INTEGRALS [J].
DYNKIN, EB ;
MANDELBAUM, A .
ANNALS OF STATISTICS, 1983, 11 (03) :739-745
[13]  
Ito K., 1951, J MATH SOC JPN, V3, P157
[14]  
Ivanoff G., 1982, STOCHASTIC PROCESS, V12, P171
[15]   A Wong-Zakai type approximation for multiple Wiener-Stratonovich integrals [J].
Jeon, JW ;
Lee, KS ;
Kim, YT .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (05) :1257-1271
[16]  
KALLENBERG O., 2021, Foundations of Modern Probability
[17]   An estimate on the supremum of a nice class of stochastic integrals and U-statistics [J].
Major, P .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (03) :489-537
[18]   An estimate about multiple stochastic integrals with respect to a normalized empirical measure [J].
Major, P .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (03) :295-341
[19]  
Major P, 2013, LECT NOTES MATH, V2079, P1, DOI 10.1007/978-3-642-37617-7
[20]   Tail behaviour of multiple random integrals and U-statistics [J].
Major, Peter .
PROBABILITY SURVEYS, 2005, 2 :448-505