Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model

被引:1
作者
Ozturk, Elif Meltem Aslan [1 ]
Unsal, Guerkan [2 ]
Erisir, Ferhat [3 ]
Orhan, Kaan [4 ]
机构
[1] Baskent Univ, Fac Dent, Dept Dentomaxillofacial Radiol, Ankara, Turkiye
[2] Western Univ, Schulich Sch Med & Dent, London, ON, Canada
[3] Near East Univ, Fac Med, Dept Otorhinolaryngol & Head & Neck Surg, Kyrenia, Cyprus
[4] Ankara Univ, Fac Dent, Dept Dentomaxillofacial Radiol, Ankara, Turkiye
关键词
Machine learning; Oral squamous cell carcinoma; Bone invasion; Magnetic resonance imaging; CAVITY; CANCER; RADIOMICS;
D O I
10.1007/s00405-024-08862-z
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
ObjectivesRadiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC) and predicting bone metastasis using magnetic resonance imaging (MRI).Materials-methodsMRI radiomic features were extracted and analyzed to identify malignant lesions. A total of 86 patients (44 with benign lesions without bone invasion and 42 with malignant lesions with bone invasion) were included. Data and clinical information were managed using the RadCloud Platform (Huiying Medical Technology Co., Ltd., Beijing, China). The study employed a hand-crafted radiomics model, with the dataset randomly split into training and validation sets in an 8:2 ratio using 815 random seeds.ResultsThe results revealed that the ML method support vector machine (SVM) performed best for detecting bone invasion (AUC = 0.999) in the test set. Radiomics tumor features derived from MRI are useful to predicting bone invasion from oral squamous cell carcinoma with high accuracy.ConclusionsThis study introduces an ML model utilizing SVM and radiomics to predict bone invasion in OSCC. Despite the promising results, the small sample size necessitates larger multicenter studies to validate and expand these findings.
引用
收藏
页码:6585 / 6597
页数:13
相关论文
共 34 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Accuracy of the Cone Beam Computed Tomography in the Detection of Bone Invasion in Patients with Oral Cancer: A Systematic Review
    Bombeccari, Gian Paolo
    Candotto, Valentina
    Gianni, Aldo Bruno
    Carinci, Francesco
    Spadari, Francesco
    [J]. EURASIAN JOURNAL OF MEDICINE, 2019, 51 (03) : 298 - 306
  • [3] External validation of an MR-based radiomic model predictive of locoregional control in oropharyngeal cancer
    Bos, Paula
    Martens, Roland M. M.
    de Graaf, Pim
    Jasperse, Bas
    van Griethuysen, Joost J. M.
    Boellaard, Ronald
    Leemans, C. Rene
    Beets-Tan, Regina G. H.
    van de Wiel, Mark A. A.
    van den Brekel, Michiel W. M.
    Castelijns, Jonas A. A.
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (04) : 2850 - 2860
  • [4] Cancer IAfRo, 2020, IARC MONOGRAPHS
  • [5] EFFICACY AND SAFETY OF TREATING T4 ORAL CAVITY TUMORS WITH PRIMARY CHEMORADIOTHERAPY
    Cohen, Ezra E. W.
    Baru, Joshua
    Huo, Dezheng
    Haraf, Daniel J.
    Crowley, Maureen
    Witt, Mary Ellyn
    Blair, Elizabeth A.
    Weichselbaum, Ralph R.
    Rosen, Fred
    Vokes, Everett E.
    Stenson, Kerstin
    [J]. HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2009, 31 (08): : 1013 - 1021
  • [6] MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures
    Corti, Anna
    De Cecco, Loris
    Cavalieri, Stefano
    Lenoci, Deborah
    Pistore, Federico
    Calareso, Giuseppina
    Mattavelli, Davide
    de Graaf, Pim
    Leemans, C. Rene
    Brakenhoff, Ruud H.
    Ravanelli, Marco
    Poli, Tito
    Licitra, Lisa
    Corino, Valentina
    Mainardi, Luca
    [J]. BIOMARKER RESEARCH, 2023, 11 (01)
  • [7] Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018
    Ferlay, J.
    Colombet, M.
    Soerjomataram, I.
    Dyba, T.
    Randi, G.
    Bettio, M.
    Gavin, A.
    Visser, O.
    Bray, F.
    [J]. EUROPEAN JOURNAL OF CANCER, 2018, 103 : 356 - 387
  • [8] Filkov V., 2004, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V13, P863, DOI 10.1142/S0218213004001867
  • [9] Contemporary management of cancer of the oral cavity
    Genden, Eric M.
    Ferlito, Alfio
    Silver, Carl E.
    Takes, Robert P.
    Suarez, Carlos
    Owen, Randall P.
    Haigentz, Missak, Jr.
    Stoeckli, Sandro J.
    Shaha, Ashok R.
    Rapidis, Alexander D.
    Pablo Rodrigo, Juan
    Rinaldo, Alessandra
    [J]. EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2010, 267 (07) : 1001 - 1017
  • [10] Goder A, 2008, SIAM PROC S, P109