Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [41] Option pricing in the moderate deviations regime
    Friz, Peter
    Gerhold, Stefan
    Pinter, Arpad
    MATHEMATICAL FINANCE, 2018, 28 (03) : 962 - 988
  • [42] Resonance phenomena in option pricing with arbitrage
    Contreras, M.
    Echeverria, J.
    Pena, J. P.
    Villena, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [43] A robust control framework for option pricing
    McEneaney, WM
    MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (01) : 202 - 221
  • [44] EUROPEAN OPTION PRICING WITH TRANSACTION COSTS
    DAVIS, MHA
    PANAS, VG
    ZARIPHOPOULOU, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) : 470 - 493
  • [45] A neural network approach to option pricing
    Mostafa, F.
    Dillon, T.
    COMPUTATIONAL FINANCE AND ITS APPLICATIONS III, 2008, : 71 - 85
  • [46] Option pricing with fuzzy interest rate
    Gao, Jinwu
    Zhang, Rong
    Zhang, Jie
    Proceedings of the Sixth International Conference on Information and Management Sciences, 2007, 6 : 614 - 620
  • [47] ON THE INTERCHANGEABILITY OF BARRIER OPTION PRICING MODELS
    Visagie, Jaco
    SOUTH AFRICAN STATISTICAL JOURNAL, 2018, 52 (02) : 157 - 171
  • [48] Option pricing with realistic ARCH processes
    Zumbach, Gilles
    Fernandez, Luis
    QUANTITATIVE FINANCE, 2014, 14 (01) : 143 - 170
  • [49] A Binary Option Pricing Based on Fuzziness
    Miyake, Masatoshi
    Inoue, Hiroshi
    Shi, Jianming
    Shimokawa, Tetsuya
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2014, 13 (06) : 1211 - 1227
  • [50] Monte Carlo simulation of option pricing
    Thuo, Gikiri
    3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 3, 2006, : 49 - 54