Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [31] A solution to the multidimensionality in option pricing
    Alghalith, Moawia
    Wong, Wing Keung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (07) : 2477 - 2482
  • [32] Option pricing in incomplete markets
    Zhang, Qiang
    Han, Jiguang
    APPLIED MATHEMATICS LETTERS, 2013, 26 (10) : 975 - 978
  • [33] Option pricing in a world with arbitrage
    Guo, X
    Shepp, L
    STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 87 - 96
  • [34] On empirical likelihood option pricing
    Zhong, Xiaolong
    Cao, Jie
    Jin, Yong
    Zheng, Andwei
    JOURNAL OF RISK, 2017, 19 (05): : 41 - 53
  • [35] Informative option portfolios in filter design for option pricing models
    Orlowski, Piotr
    QUANTITATIVE FINANCE, 2021, 21 (06) : 945 - 965
  • [36] Discuss on the Application of Option Pricing Law in Urban Land Pricing
    Wang Ling
    Wang Jianjun
    Wang Fei
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON CONSTRUCTION & REAL ESTATE MANAGEMENT, VOLS 1 AND 2, 2009, : 1168 - +
  • [37] Measuring banks' liquidity risk: An option-pricing approach
    Zhang, Jinqing
    He, Liang
    An, Yunbi
    JOURNAL OF BANKING & FINANCE, 2020, 111
  • [38] Option Pricing in Subdiffusive Bachelier Model
    Magdziarz, Marcin
    Orzel, Sebastian
    Weron, Aleksander
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (01) : 187 - 203
  • [39] The importance of stock liquidity on option pricing
    Feng, Shih-Ping
    Hung, Mao-Wei
    Wang, Yaw-Huei
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2016, 43 : 457 - 467
  • [40] A path integral way to option pricing
    Montagna, G
    Nicrosini, O
    Moreni, N
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (3-4) : 450 - 466