Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [21] Option Pricing with Informed Judgment
    Aboura, Khalid
    Agbinya, Johnson I.
    2013 PAN AFRICAN INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTING AND TELECOMMUNICATIONS (PACT), 2013, : 218 - 223
  • [22] Option Pricing and Distribution Characteristics
    David J. Mauler
    James B. McDonald
    Computational Economics, 2015, 45 : 579 - 595
  • [23] OPTION PRICING FOR GENERALIZED DISTRIBUTIONS
    MCDONALD, JB
    BOOKSTABER, RM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (12) : 4053 - 4068
  • [24] Singular perturbations in option pricing
    Fouque, JP
    Papanicolaou, G
    Sircar, R
    Solna, K
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) : 1648 - 1665
  • [25] The Pricing of Option on Bond Forwards
    Ahn, Chang Mo
    Cho, D. Chinhyung
    SEOUL JOURNAL OF ECONOMICS, 2005, 18 (04) : 355 - 369
  • [26] SIMPLIFIED OPTION PRICING TECHNIQUES
    Alghalith, Moawia
    Floros, Christos
    Poufnas, Thomas
    ANNALS OF FINANCIAL ECONOMICS, 2019, 14 (01)
  • [27] Option Pricing and Distribution Characteristics
    Mauler, David J.
    McDonald, James B.
    COMPUTATIONAL ECONOMICS, 2015, 45 (04) : 579 - 595
  • [28] Option pricing with state-dependent pricing kernel
    Tong, Chen
    Hansen, Peter Reinhard
    Huang, Zhuo
    JOURNAL OF FUTURES MARKETS, 2022, 42 (08) : 1409 - 1433
  • [29] A note on intraday option pricing
    Scalas, Enrico
    Politi, Mauro
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2013, 1 (01) : 76 - 86
  • [30] Kelly trading and option pricing
    Bermin, Hans-Peter
    Holm, Magnus
    JOURNAL OF FUTURES MARKETS, 2021, 41 (07) : 987 - 1006