Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [11] A Reduced Basis for Option Pricing
    Cont, Rama
    Lantos, Nicolas
    Pironneau, Olivier
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 287 - 316
  • [12] Option Pricing in an Incomplete Market
    Grigorian, Karen
    Jarrow, Robert A.
    QUARTERLY JOURNAL OF FINANCE, 2024, 14 (03)
  • [13] Isogeometric analysis in option pricing
    Pospisil, Jan
    Svigler, Vladimir
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2177 - 2200
  • [14] Option pricing with stochastic variables
    Wang, JW
    Chen, GM
    Li, Y
    Merville, L
    PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 1569 - 1576
  • [15] Empirical option pricing: a retrospection
    Bates, DS
    JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) : 387 - 404
  • [16] Option Pricing on Multiple Assets
    Thomas P. Branson
    Yang Ho Choi
    Acta Applicandae Mathematica, 2006, 94 : 137 - 162
  • [17] OPTION PRICING WITH PADE APPROXIMATIONS
    Koroglu, Canan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2012, 61 (02): : 45 - 50
  • [18] Option pricing and ARCH processes
    Zumbach, Gilles
    FINANCE RESEARCH LETTERS, 2012, 9 (03) : 144 - 156
  • [19] Option pricing on multiple assets
    Branson, Thomas P.
    Choi, Yang Ho
    ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (02) : 137 - 162
  • [20] Financial Option Pricing on APU
    Doerksen, Matthew
    Solomon, Steven
    Thulasiraman, Parimala
    Thulasiram, Ruppa K.
    CONTEMPORARY COMPUTING, 2012, 306 : 431 - 441