Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [1] The Classical and Stochastic Approach to Option Pricing
    Benada, Ludek
    Cupal, Martin
    EUROPEAN FINANCIAL SYSTEMS 2014, 2014, : 49 - 55
  • [2] Robust option pricing
    Bandi, Chaithanya
    Bertsimas, Dimitris
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 239 (03) : 842 - 853
  • [3] Supersymmetry in option pricing
    Jana, T. K.
    Roy, P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (12) : 2350 - 2355
  • [4] Martingale option pricing
    McCauley, J. L.
    Gunaratne, G. H.
    Bassler, K. E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 380 (1-2) : 351 - 356
  • [5] Approximate option pricing
    Chalasani, P
    Jha, S
    Saias, I
    ALGORITHMICA, 1999, 25 (01) : 2 - 21
  • [6] CAPM option pricing
    Husmann, Sven
    Todorova, Neda
    FINANCE RESEARCH LETTERS, 2011, 8 (04): : 213 - 219
  • [7] Asian option pricing
    Svabova, Lucia
    Durica, Marek
    MANAGING AND MODELLING OF FINANCIAL RISKS - 6TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PTS 1 AND 2, 2012, : 600 - +
  • [8] Strategic option pricing
    Bieta, Volker
    Broll, Udo
    Siebe, Wilfried
    ECONOMICS AND BUSINESS REVIEW, 2020, 6 (03) : 118 - 129
  • [9] Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data
    Audrino, Francesco
    Fengler, Matthias R.
    JOURNAL OF BANKING & FINANCE, 2015, 61 : 46 - 63
  • [10] Clustering and Classification in Option Pricing
    Gradojevic, Nikola
    Kukolj, Dragan
    Gencay, Ramazan
    REVIEW OF ECONOMIC ANALYSIS, 2011, 3 (02): : 109 - 128