BRILL-NOETHER AND EXISTENCE OF SEMISTABLE SHEAVES FOR DEL PEZZO SURFACES

被引:1
作者
Levine, Daniel [1 ]
Zhang, Shizhuo [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
基金
欧洲研究理事会;
关键词
Moduli spaces of sheaves; del Pezzo surfaces; Brill-No ether theory; Bogo- molov inequalities;
D O I
10.5802/aif.3619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X m be a del Pezzo surface of degree 9 - m. When m 5 5, we compute the cohomology of a general sheaf in M ( v ), the moduli space of Gieseker semistable sheaves with Chern character v . We also classify the Chern characters for which the general sheaf in M ( v ) is non -special, i.e. has at most one nonzero cohomology group. Our results hold for arbitrary polarizations, slope semistability, and semi -exceptional moduli spaces. When m 5 6, we further show our construction of certain vector bundles implies the existence of stable and semistable sheaves with respect to the anti -canonical polarization.
引用
收藏
页码:1189 / 1227
页数:40
相关论文
共 19 条
[1]  
[Anonymous], 1994, Izv. Ross. Akad. Nauk Ser. Mat.
[2]  
[Anonymous], 1996, J. Math. Sci., Tokyo, V3, P495
[3]  
Ciliberto C, 1998, J REINE ANGEW MATH, V501, P191
[4]  
Ciliberto C, 2013, CLAY MATH P, P185
[5]   Existence of semistable sheaves on Hirzebruch surfaces [J].
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2021, 381
[6]   BRILL-NOETHER THEOREMS AND GLOBALLY GENERATED VECTOR BUNDLES ON HIRZEBRUCH SURFACES [J].
Coskun, Izzet ;
Huizenga, Jack .
NAGOYA MATHEMATICAL JOURNAL, 2020, 238 :1-36
[7]   Weak Brill-Noether for rational surfaces [J].
Coskun, Izzet ;
Huizenga, Jack .
LOCAL AND GLOBAL METHODS IN ALGEBRAIC GEOMETRY, 2018, 712 :81-104
[8]  
DREZET JM, 1985, ANN SCI ECOLE NORM S, V18, P193
[9]  
Gottsche L., 1998, ALGEBRAIC GEOM, P63
[10]   COMPLETE LINEAR-SYSTEMS ON RATIONAL SURFACES [J].
HARBOURNE, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) :213-226