Predicting pellet quality using multiple linear regression with Principal Component Analysis (PCA)

被引:0
|
作者
You, Jihao [1 ]
Tulpan, Dan [1 ]
Ellis, Jennifer L. [1 ]
机构
[1] Univ Guelph, Guelph, ON, Canada
关键词
dimension reduction; multiple linear regression; pellet quality; Principal Component Analysis (PCA);
D O I
暂无
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
493
引用
收藏
页码:154 / 155
页数:2
相关论文
共 50 条
  • [1] Predicting pellet quality using multiple linear regression with Principal Component Analysis (PCA)
    You, Jihao
    Tulpan, Dan
    Ellis, Jennifer L.
    JOURNAL OF ANIMAL SCIENCE, 2024, 102
  • [2] Forecast Model for Price of Gold: Multiple Linear Regression with Principal Component Analysis
    Manoj, Jyothi
    Suresh, K. K.
    THAILAND STATISTICIAN, 2019, 17 (01): : 125 - 131
  • [3] Analysis of PEM fuel cell experimental data using principal component analysis and multi linear regression
    Placca, Latevi
    Kouta, Raed
    Candusso, Denis
    Blachot, Jean-Francois
    Charon, Willy
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 4582 - 4591
  • [4] Econometric model of iron ore through principal component analysis and multiple linear regression
    Da Silva Campos, Barbara Isabela
    Lopes, Gisele C. A.
    De Castro, Philipe S. C.
    Dos Santos, Tatiana B.
    Souza, Felipe R.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2023, 95 (01):
  • [5] DEPENDENCE ANALYSIS USING MULTIPLE LINEAR REGRESION AND PRINCIPAL COMPONENT REGRESSION IN AIR POLLUTANTS AND METEOROLOGICAL PARAMETERS: CASE STUDY
    Novoa Betancur, Julian
    Parra, Daniel
    Quijano, Silvia
    Orrego, Diana
    Becerra, Miguel
    QUID-INVESTIGACION CIENCIA Y TECNOLOGIA, 2014, (23): : 13 - 19
  • [6] Principal component analysis (PCA) and multiple linear regression (MLR) statistical tools to evaluate the effect of E-beam irradiation on ready-to-eat food
    Guillen-Casla, Vanesa
    Rosales-Conrado, Noelia
    Eugenia Leon-Gonzalez, Maria
    Vicente Perez-Arribas, Luis
    Maria Polo-Diez, Luis
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2011, 24 (03) : 456 - 464
  • [7] Improving the Quality of FPGA RO-PUF by Principal Component Analysis (PCA)
    Asha, K. A.
    Hsu, Li En
    Patyal, Abhishek
    Chen, Hung-Ming
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2021, 17 (03)
  • [8] A PRINCIPAL COMPONENT ANALYSIS (PCA) METHOD FOR PREDICTING THE CORRELATION BETWEEN SOME FABRIC PARAMETERS AND THE DRAPE
    Hamdi, Thouraya
    Ghith, Adel
    Fayala, Faten
    AUTEX RESEARCH JOURNAL, 2014, 14 (01) : 22 - 27
  • [9] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196
  • [10] Determination of florfenicol by Raman spectroscopy with principal component analysis (PCA) and partial least squares regression (PLSR)
    Ali, Zain
    Nawaz, Haq
    Majeed, Muhammad Irfan
    Rashid, Nosheen
    Mohsin, Mashkoor
    Raza, Ali
    Shakeel, Muhammad
    Ali, Muhammad Zeeshan
    Sabir, Amina
    Shahbaz, Muhammad
    Ehsan, Usama
    ul Hasan, Hafiz Mahmood
    ANALYTICAL LETTERS, 2024, 57 (01) : 30 - 40