A study of Hilfer-Katugampola type pantograph equations with complex order

被引:7
|
作者
Harikrishnan, S. [1 ]
Elsayed, E. M. [2 ]
Kanagarajan, K. [3 ]
Vivek, D. [4 ]
机构
[1] TIPS Coll Arts & Sci, Dept Math, Coimbatore, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Sri Ramakrishna Mission Vidyalaya Coll Arts & Sci, Dept Math, Coimbatore, India
[4] PSG Coll Arts & Sci, Dept Math, Coimbatore, India
来源
EXAMPLES AND COUNTEREXAMPLES | 2022年 / 2卷
关键词
Fractional derivative; Non-local condition; Ulam-Hyers-Rassias stability; Complex order; FRACTIONAL DIFFERENTIAL-EQUATIONS; ULAM STABILITY; DERIVATIVES; EXISTENCE;
D O I
10.1016/j.exco.2021.100045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with existence, uniqueness and Ulam-Hyers-Rassias stability solutions for complex Hilfer-Katugampola type pantograph equations involving initial and nonlocal condition.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The Ulam Stability of High-Order Variable-Order φ-Hilfer Fractional Implicit Integro-Differential Equations
    Wang, Peiguang
    Han, Bing
    Bao, Junyan
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [42] Non local coupled system for ψ-Hilfer fractional order Langevin equations
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Thaiprayoon, Chatthai
    AIMS MATHEMATICS, 2021, 6 (09): : 9731 - 9756
  • [43] Stability Results for Implicit Fractional Pantograph Differential Equations via φ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition
    Ahmed, Idris
    Kumam, Poom
    Shah, Kamal
    Borisut, Piyachat
    Sitthithakerngkiet, Kanokwan
    Ahmed Demba, Musa
    MATHEMATICS, 2020, 8 (01)
  • [44] On the Generalized Liouville-Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions
    Awadalla, Muath
    Subramanian, Muthaiah
    Abuasbeh, Kinda
    Manigandan, Murugesan
    SYMMETRY-BASEL, 2022, 14 (11):
  • [45] Study of a boundary value problem for fractional orderψ -Hilfer fractional derivative
    Harikrishnan, S.
    Shah, Kamal
    Kanagarajan, K.
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 589 - 596
  • [46] A novel matrix technique for multi-order pantograph differential equations of fractional order
    Izadi, Mohammad
    Srivastava, H. M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2253):
  • [47] Ψ-Hilfer type linear fractional differential equations withvariable coefficients
    Li, Fang
    Wang, Huiwen
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, : 807 - 838
  • [48] Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
    Rizwan, Rizwan
    Zada, Akbar
    Waheed, Hira
    Riaz, Usman
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2405 - 2423
  • [49] Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations
    Nuchpong, Cholticha
    Ntouyas, Sotiris K.
    Vivek, Devaraj
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [50] NONLINEAR IMPLICIT GENERALIZED HILFER TYPE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES
    Salim, Abdelkrim
    Benchohra, Mouffak
    Lazreg, Jamal eddine
    N'guerekata, Gaston
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 2234 - 2250