A study of Hilfer-Katugampola type pantograph equations with complex order

被引:7
|
作者
Harikrishnan, S. [1 ]
Elsayed, E. M. [2 ]
Kanagarajan, K. [3 ]
Vivek, D. [4 ]
机构
[1] TIPS Coll Arts & Sci, Dept Math, Coimbatore, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Sri Ramakrishna Mission Vidyalaya Coll Arts & Sci, Dept Math, Coimbatore, India
[4] PSG Coll Arts & Sci, Dept Math, Coimbatore, India
来源
EXAMPLES AND COUNTEREXAMPLES | 2022年 / 2卷
关键词
Fractional derivative; Non-local condition; Ulam-Hyers-Rassias stability; Complex order; FRACTIONAL DIFFERENTIAL-EQUATIONS; ULAM STABILITY; DERIVATIVES; EXISTENCE;
D O I
10.1016/j.exco.2021.100045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with existence, uniqueness and Ulam-Hyers-Rassias stability solutions for complex Hilfer-Katugampola type pantograph equations involving initial and nonlocal condition.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Study on Sobolev type Hilfer evolution equations with non-instantaneous impulses
    Gou, Haide
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (05) : 1153 - 1170
  • [32] A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator
    Shammakh, Wafa
    Selvam, A. George Maria
    Dhakshinamoorthy, Vignesh
    Alzabut, Jehad
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [33] Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions
    Guida, Karim
    Ibnelazyz, Lahcen
    Hilal, Khalid
    Melliani, Said
    AIMS MATHEMATICS, 2021, 6 (08): : 8239 - 8255
  • [34] Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type
    Abbas, S.
    Benchohra, M.
    Lagreg, J. E.
    Alsaedi, A.
    Zhou, Y.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [35] Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type
    S Abbas
    M Benchohra
    JE Lagreg
    A Alsaedi
    Y Zhou
    Advances in Difference Equations, 2017
  • [36] Fractional differential equations of Caputo-Katugampola type and numerical solutions
    Zeng, Shengda
    Baleanu, Dumitru
    Bai, Yunru
    Wu, Guocheng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 549 - 554
  • [37] Study of fractional order pantograph type impulsive antiperiodic boundary value problem
    Ali, Arshad
    Shah, Kamal
    Abdeljawad, Thabet
    Khan, Hasib
    Khan, Aziz
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] Study on the mild solution of Sobolev type Hilfer fractional evolution equations with boundary conditions
    Gou, Haide
    Li, Baolin
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 168 - 179
  • [39] Study a class of Hilfer fractional stochastic integrodifferential equations with Poisson jumps
    Balasubramaniam, P.
    Saravanakumar, S.
    Ratnavelu, K.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (06) : 1021 - 1036
  • [40] Some k-fractional extension of Grüss-type inequalities via generalized Hilfer–Katugampola derivative
    Samaira Naz
    Muhammad Nawaz Naeem
    Yu-Ming Chu
    Advances in Difference Equations, 2021