A study of Hilfer-Katugampola type pantograph equations with complex order

被引:7
|
作者
Harikrishnan, S. [1 ]
Elsayed, E. M. [2 ]
Kanagarajan, K. [3 ]
Vivek, D. [4 ]
机构
[1] TIPS Coll Arts & Sci, Dept Math, Coimbatore, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Sri Ramakrishna Mission Vidyalaya Coll Arts & Sci, Dept Math, Coimbatore, India
[4] PSG Coll Arts & Sci, Dept Math, Coimbatore, India
来源
EXAMPLES AND COUNTEREXAMPLES | 2022年 / 2卷
关键词
Fractional derivative; Non-local condition; Ulam-Hyers-Rassias stability; Complex order; FRACTIONAL DIFFERENTIAL-EQUATIONS; ULAM STABILITY; DERIVATIVES; EXISTENCE;
D O I
10.1016/j.exco.2021.100045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with existence, uniqueness and Ulam-Hyers-Rassias stability solutions for complex Hilfer-Katugampola type pantograph equations involving initial and nonlocal condition.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Dynamical analysis of Hilfer-Hadamard type fractional pantograph equations via successive approximation
    Vivek, D.
    Shah, Kamal
    Kanagarajan, K.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 225 - 230
  • [22] Nonlocal boundary value problems for Hilfer-type pantograph fractional differential equations and inclusions
    Wongcharoen, Athasit
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [23] EXISTENCE AND STABILITY RESULTS FOR DIFFERENTIAL EQUATIONS WITH COMPLEX ORDER INVOLVING HILFER FRACTIONAL DERIVATIVE
    Harikrishnan, S.
    Kanagarajan, K.
    Elsayed, E. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (01): : 94 - 101
  • [24] Ulam stability for nonlocal differential equations involving the Hilfer–Katugampola fractional derivative
    Mouffak Benchohra
    Soufyane Bouriah
    Johnny Henderson
    Afrika Matematika, 2021, 32 : 829 - 851
  • [25] Study of Multi-Term Pantograph Differential Equations of Arbitrary Order
    Asma
    Rahman, Ghaus Ur
    Gomez-Aguilar, J. F.
    Akhtar, Mubeen
    Torres-Jimenez, J.
    FEW-BODY SYSTEMS, 2022, 63 (04)
  • [26] The averaging principle of Hilfer fractional stochastic pantograph equations with non-Lipschitz conditions
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Chalishajar, Dimplekumar
    Baleanu, Dumitru
    Sandrasekaran, Varshini
    STATISTICS & PROBABILITY LETTERS, 2024, 215
  • [27] On Katugampola fractional order derivatives and Darboux problem for differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 125 - 136
  • [28] Theoretical Results on the pth Moment of φ-Hilfer Stochastic Fractional Differential Equations with a Pantograph Term
    Djaouti, Abdelhamid Mohammed
    Liaqat, Muhammad Imran
    FRACTAL AND FRACTIONAL, 2025, 9 (03)
  • [29] A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions
    Aly, Elkhateeb S.
    Maheswari, M. Latha
    Shri, K. S. Keerthana
    Hamali, Waleed
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [30] Study on Sobolev type Hilfer fractional integro-differential equations with delay
    Gou, Haide
    Li, Baolin
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01) : 1 - 26