Scenario-aware clustered federated learning for vehicle trajectory prediction with non-IID data

被引:0
作者
Tao, Liang [1 ]
Cui, Yangguang [1 ]
Zhang, Xiaodong [2 ]
Shen, Wenfeng [1 ]
Lu, Weijia [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] United Automot Elect Syst Co, Shanghai, Peoples R China
关键词
Vehicle trajectory prediction; federated learning; deep learning; intelligent vehicles; intelligent transportation systems;
D O I
10.1177/09544070241272761
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In recent years, Federated Learning (FL) has attracted much attention in Vehicle Trajectory Prediction (VTP) as it can resolve the critical issues of insufficient data, data privacy, and training efficiency. However, compared with centralized training, the model trained by FL may have insufficient prediction performance. This important issue comes from a statistical heterogeneity distribution of the local data in the participating clients, that is, non-IID. Therefore, this paper introduces a Clustered Federated Learning (CFL) approach for the VTP model to mitigate the influence of non-IID data. The proposed approach consists of federated trajectory clustering and federated VTP model training. In federated trajectory clustering, the optimal trajectory scenario discriminator is produced using federated K-means clustering without direct access to private data. In the federated VTP model training, multiple VTP models for specific trajectory scenarios are trained to deal with the influence of non-IID data. Experimental results reveal that our approach outperforms the state-of-the-art FL method on both NGSIM and HighD datasets, achieving up to 13.82% convergence acceleration and 12.47% RMSE reduction.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Inverse Distance Aggregation for Federated Learning with Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Navab, Nassir
    Albarqouni, Shadi
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND DISTRIBUTED AND COLLABORATIVE LEARNING, DART 2020, DCL 2020, 2020, 12444 : 150 - 159
  • [12] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [13] Dual Adversarial Federated Learning on Non-IID Data
    Zhang, Tao
    Yang, Shaojing
    Song, Anxiao
    Li, Guangxia
    Dong, Xuewen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 233 - 246
  • [14] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [15] Adaptive Federated Deep Learning With Non-IID Data
    Zhang, Ze-Hui
    Li, Qing-Dan
    Fu, Yao
    He, Ning-Xin
    Gao, Tie-Gang
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (12): : 2493 - 2506
  • [16] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [17] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [18] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [19] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [20] Decoupled Federated Learning for ASR with Non-IID Data
    Zhu, Han
    Wang, Jindong
    Cheng, Gaofeng
    Zhang, Pengyuan
    Yan, Yonghong
    INTERSPEECH 2022, 2022, : 2628 - 2632