Multigranularity Feature Automatic Marking-Based Deep Learning for Anomaly Detection of Industrial Control Systems

被引:1
|
作者
Du, Xinyi [1 ,2 ,3 ]
Xu, Chi [2 ,3 ]
Li, Lin [2 ]
Li, Xinchun [1 ]
机构
[1] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125105, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang 110016, Peoples R China
来源
IEEE OPEN JOURNAL OF INSTRUMENTATION AND MEASUREMENT | 2024年 / 3卷
基金
中国国家自然科学基金;
关键词
Protocols; Feature extraction; Anomaly detection; Deep learning; Industrial control; Convolutional neural networks; Security; convolutional neural network; deep learning; feature automatic marking; feature extraction; industrial control protocol (ICP);
D O I
10.1109/OJIM.2024.3418466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Industrial control systems are facing ever-increasing security challenges due to the large-scale access of heterogeneous devices in the open Internet environment. Existing anomaly detection methods are mainly based on the priori knowledge of industrial control protocols (ICPs) whose protocol specifications, communication mechanism, and data format are already known. However, when these knowledge are blank, namely, unknown ICPs, existing methods become powerless to detect the anomaly data. To tackle this challenge, we propose a multigranularity feature automatic marking-based deep learning method to classify unknown ICPs for anomaly detection. First, to obtain the feature sequences without priori knowledge assisting, we propose a multigranularity feature extraction algorithm to extract both byte and half-byte information by fully utilizing the intensive key information in the header field of the application layer. Then, to label the feature sequences for deep learning, we propose a feature automatic marking algorithm that utilizes the inconsistency feature sequences to dynamically update the feature sequence set. With the labeled feature sequences, we employ deep learning with 1-D convolutional neural network and gated recurrent unit to classify the unknown ICPs and realize anomaly detection. Extensive experiments on two public datasets show that both the accuracy and precision of the proposed method reach above 98.4%, which is better than the three benchmark methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Data anomaly detection with automatic feature selection and deep learning
    Jiang, Huachen
    Ge, Ensheng
    Wan, Chunfeng
    Li, Shu
    Quek, Ser Tong
    Yang, Kang
    Ding, Youliang
    Xue, Songtao
    STRUCTURES, 2023, 57
  • [2] DAICS: A Deep Learning Solution for Anomaly Detection in Industrial Control Systems
    Abdelaty, Maged
    Doriguzzi-Corin, Roberto
    Siracusa, Domenico
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 1117 - 1129
  • [3] A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning
    Ahmed, Imran
    Ahmad, Misbah
    Chehri, Abdellah
    Jeon, Gwanggil
    MICROMACHINES, 2023, 14 (01)
  • [4] Deep Learning-Based Cyber-Physical Feature Fusion for Anomaly Detection in Industrial Control Systems
    Du, Yan
    Huang, Yuanyuan
    Wan, Guogen
    He, Peilin
    MATHEMATICS, 2022, 10 (22)
  • [5] Intrusion Detection in Industrial Control Systems Based on Deep Reinforcement Learning
    Sangoleye, Fisayo
    Johnson, Jay
    Eleni Tsiropoulou, Eirini
    IEEE ACCESS, 2024, 12 : 151444 - 151459
  • [6] Anomaly Detection of Industrial Control Systems Based on Transfer Learning
    Wang, Weiping
    Wang, Zhaorong
    Zhou, Zhanfan
    Deng, Haixia
    Zhao, Weiliang
    Wang, Chunyang
    Guo, Yongzhen
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (06) : 821 - 832
  • [7] Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
    Tang, Ta-Wei
    Hsu, Hakiem
    Huang, Wei-Ren
    Li, Kuan-Ming
    SENSORS, 2022, 22 (23)
  • [8] Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems
    Gawehn, Philip
    Ergenc, Doganalp
    Fischer, Mathias
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4878 - 4884
  • [9] Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
    Tang, Shijie
    Ding, Yong
    Wang, Huiyong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 1129 - 1150
  • [10] Anomaly Detection Algorithm of Industrial Internet of Things Data Platform Based on Deep Learning
    Li, Xing
    Xie, Chao
    Zhao, Zhijia
    Wang, Chunbao
    Yu, Huajun
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (03): : 1037 - 1048