Predicting the Air Quality Using Machine Learning Algorithms: A Comparative Study

被引:0
|
作者
Goel, Neetika [1 ]
Kumari, Ritika [1 ,2 ]
Bansal, Poonam [1 ]
机构
[1] IGDTUW, Dept Artificial Intelligence & Data Sci, Delhi, India
[2] Guru Gobind Singh Indraprastha Univ, USICT, New Delhi, India
来源
SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024 | 2024年 / 945卷
关键词
Air Quality Index; Classification; Machine learning techniques; Random forest; Support vector machine;
D O I
10.1007/978-981-97-1320-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Globally, air pollution is a severe issue that has an impact on both the environment and people's health. Accurate air quality forecasting is essential for putting appropriate mitigation measures in place and protecting people's wellbeing. The Air Quality Index, or AQI, is a numerical index that expresses the detrimental health implications of air pollution and the state of the air in a particular geographic region. Therefore, we use five widely recognized machine learning (ML) techniques in this study: decision tree algorithm (DT), random forest algorithm (RF), K-nearest neighbors algorithm (KNN), support vector machines (SVM), and Naive Bayes algorithm (NB) to perform the air quality forecasting. The Global Air Pollution Dataset and the AQI-Air Quality Index, which have been extracted from the Kaggle Repository which constitutes AQI values from various locations, are the two datasets on which they are implemented. Performance is assessed using four metrics: recall, F1-score, accuracy, and precision. Investigations illustrate that the random forest algorithm performs effectively in predicting air quality in both datasets.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 50 条
  • [1] Machine learning algorithms in air quality modeling
    Masih, A.
    GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2019, 5 (04): : 515 - 534
  • [2] A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer
    Lv, Yingli
    Qui-Thao Le
    Hoang-Bac Bui
    Xuan-Nam Bui
    Hoang Nguyen
    Trung Nguyen-Thoi
    Dou, Jie
    Song, Xuan
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [3] Fall Detection Using Supervised Machine Learning Algorithms: A Comparative Study
    Zerrouki, Nabil
    Harrou, Fouzi
    Houacine, Amrane
    Sun, Ying
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 665 - 670
  • [4] A comparative evaluation of machine learning algorithms for predicting syngas fermentation outcomes
    Roell, Garrett W.
    Sathish, Ashik
    Wan, Ni
    Cheng, Qianshun
    Wen, Zhiyou
    Tang, Yinjie J.
    Bao, Forrest Sheng
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 186
  • [5] Machine Learning Algorithms for Predicting the Water Quality Index
    Hussein, Enas E.
    Baloch, Muhammad Yousuf Jat
    Nigar, Anam
    Abualkhair, Hussain F.
    Aldawood, Faisal Khaled
    Tageldin, Elsayed
    WATER, 2023, 15 (20)
  • [6] Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms
    Nancy, V. Auxilia Osvin
    Prabhavathy, P.
    Arya, Meenakshi S.
    Ahamed, B. Shamreen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45913 - 45957
  • [7] A comparative study of machine learning and deep learning algorithms for predicting student's academic performance
    Bhushan, Megha
    Vyas, Satyam
    Mall, Shrey
    Negi, Arun
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (06) : 2674 - 2683
  • [8] A comparative study of machine learning and deep learning algorithms for predicting student’s academic performance
    Megha Bhushan
    Satyam Vyas
    Shrey Mall
    Arun Negi
    International Journal of System Assurance Engineering and Management, 2023, 14 : 2674 - 2683
  • [9] Special Issue on Using Machine Learning Algorithms in the Prediction of Kyphosis Disease: A Comparative Study
    Dankwa, Stephen
    Zheng, Wenfeng
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [10] Detection of social media platform insults using Natural language processing and comparative study of machine learning algorithms
    Chiramel, Sruthi
    Logofatu, Doina
    Goldenthal, Gheorghe
    2020 24TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2020, : 98 - 101