Pomotrelvir and Nirmatrelvir Binding and Reactivity with SARS-CoV-2 Main Protease: Implications for Resistance Mechanisms from Computations

被引:1
作者
Schillings, Johanna [1 ]
Ramos-Guzman, Carlos A. [1 ,2 ]
Ruiz-Pernia, J. Javier [1 ]
Tunon, Inaki [1 ]
机构
[1] Univ Valencia, Dept Quim Fis, Burjassot 46100, Spain
[2] Univ Jaume 1, Dept Matemat Avanzados, Castellon de La Plana 12071, Spain
关键词
SARS-COV-2 main protease; pomotrelvir; nirmatrelvir; QM/MM; free energy;
D O I
10.1002/anie.202409527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the inhibition mechanism between pomotrelvir and the SARS-CoV-2 main protease using molecular mechanics and quantum mechanics/molecular mechanics simulations. Alchemical transformations where each Pi group of pomotrelvir was transformed into its counterpart in nirmatrelvir were performed to unravel the individual contribution of each group to the binding and reaction processes. We have shown that while a gamma-lactam ring is preferred at position P1, a delta-lactam ring is a good alternative for the design of inhibitors for variants presenting mutations at position 166. For the P2 position, tertiary amines are preferred with respect to secondary amines. Flexible side chains at the P2 position can disrupt the preorganization of the active site, favouring the exploration of non-reactive conformations. The substitution of the P2 group of pomotrelvir by that of nirmatrelvir resulted in a compound, named as C2, that presents a better binding free energy and a higher population of reactive conformations in the Michaelis complex. Analysis of the chemical reaction to form the covalent complex has shown a similar reaction mechanism and activation free energies for pomotrelvir, nirmatrelvir and C2. We hope that these findings could be useful to design better inhibitors to fight present and future variants of the SARS-CoV-2 virus. We study the inhibition mechanism of pomotrelvir against SARS-CoV-2 main protease, using MM and QM/MM simulations and free energy calculations. Transforming pomotrelvir's groups to those in nirmatrelvir revealed that tertiary amines are favored at P2, while flexible side chains at this position may disrupt active site organization. These insights may aid in designing improved inhibitors for current and future SARS-CoV-2 variants. image
引用
收藏
页数:9
相关论文
共 19 条
  • [1] The Exposome in Toxicologic Pathology
    Bolon, Brad
    Haschek, Wanda M.
    [J]. TOXICOLOGIC PATHOLOGY, 2020, 48 (06) : 718 - 720
  • [2] Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease
    Chan, H. T. Henry
    Oliveira, A. Sofia F.
    Schofield, Christopher J.
    Mulholland, Adrian J.
    Duarte, Fernanda
    [J]. JACS AU, 2023, 3 (06): : 1767 - 1774
  • [3] Nirmatrelvir for Vaccinated or Unvaccinated Adult Outpatients with Covid-19
    Hammond, Jennifer
    Fountaine, Robert J.
    Yunis, Carla
    Fleishaker, Dona
    Almas, Mary
    Bao, Weihang
    Wisemandle, Wayne
    Baniecki, Mary Lynn
    Hendrick, Victoria M.
    Kalfov, Veselin
    Simon-Campos, J. Abraham
    Pypstra, Rienk
    Rusnak, James M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2024, 390 (13) : 1186 - 1195
  • [4] From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design
    Hilgenfeld, Rolf
    [J]. FEBS JOURNAL, 2014, 281 (18) : 4085 - 4096
  • [5] The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir
    Jochmans, Dirk
    Liu, Cheng
    Donckers, Kim
    Stoycheva, Antitsa
    Boland, Sandro
    Stevens, Sarah K.
    De Vita, Chloe
    Vanmechelen, Bert
    Maes, Piet
    Trueb, Bettina
    Ebert, Nadine
    Thiel, Volker
    De Jonghe, Steven
    Vangeel, Laura
    Bardiot, Dorothee
    Jekle, Andreas
    Blatt, Lawrence M.
    Beigelman, Leonid
    Symons, Julian A.
    Raboisson, Pierre
    Chaltin, Patrick
    Marchand, Arnaud
    Neyts, Johan
    Deval, Jerome
    Vandyck, Koen
    [J]. MBIO, 2023, 14 (01):
  • [6] An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19
    Owen, Dafydd R.
    Allerton, Charlotte M. N.
    Anderson, Annaliesa S.
    Aschenbrenner, Lisa
    Avery, Melissa
    Berritt, Simon
    Boras, Britton
    Cardin, Rhonda D.
    Carlo, Anthony
    Coffman, Karen J.
    Dantonio, Alyssa
    Di, Li
    Eng, Heather
    Ferre, RoseAnn
    Gajiwala, Ketan S.
    Gibson, Scott A.
    Greasley, Samantha E.
    Hurst, Brett L.
    Kadar, Eugene P.
    Kalgutkar, Amit S.
    Lee, Jack C.
    Lee, Jisun
    Liu, Wei
    Mason, Stephen W.
    Noell, Stephen
    Novak, Jonathan J.
    Obach, R. Scott
    Ogilvie, Kevin
    Patel, Nandini C.
    Pettersson, Martin
    Rai, Devendra K.
    Reese, Matthew R.
    Sammons, Matthew F.
    Sathish, Jean G.
    Singh, Ravi Shankar P.
    Steppan, Claire M.
    Stewart, Al E.
    Tuttle, Jamison B.
    Updyke, Lawrence
    Verhoest, Patrick R.
    Wei, Liuqing
    Yang, Qingyi
    Zhu, Yuao
    [J]. SCIENCE, 2021, 374 (6575) : 1586 - +
  • [7] Pardes Biosciences Inc., 2023, PBI 0451 POMOTRELVIR
  • [8] The impact of SARS-CoV-2 3CL protease mutations on nirmatrelvir inhibitory efficiency. Computational insights into potential resistance mechanisms
    Ramos-Guzman, Carlos A.
    Andjelkovic, Milorad
    Zinovjev, Kirill
    Ruiz-Pernia, J. Javier
    Tunon, Inaki
    [J]. CHEMICAL SCIENCE, 2023, 14 (10) : 2686 - 2697
  • [9] Computational simulations on the binding and reactivity of a nitrile inhibitor of the SARS-CoV-2 main protease
    Ramos-Guzman, Carlos A.
    Ruiz-Pernia, J. Javier
    Tunon, Inaki
    [J]. CHEMICAL COMMUNICATIONS, 2021, 57 (72) : 9096 - 9099
  • [10] Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods
    Ramos-Guzman, Carlos A.
    Javier Ruiz-Pernia, J.
    Tunon, Inaki
    [J]. ACS CATALYSIS, 2020, 10 (21): : 12544 - 12554