PREPs: An Open-Source Software for High-Throughput Field Plant Phenotyping

被引:3
作者
Itoh, Atsushi [1 ]
Njane, Stephen N. [1 ]
Hirafuji, Masayuki [2 ]
Guo, Wei [2 ]
机构
[1] Natl Agr & Food Res Org, Hokkaido Agr Res Ctr, 9-4 Shinseiminami, Kasai, Hokkaido 0820081, Japan
[2] Univ Tokyo, Grad Sch Agr & Life Sci, 1 Chome 1-1, Nishitokyo, Tokyo 1880002, Japan
关键词
IMAGE-ANALYSIS; PIPELINE;
D O I
10.34133/plantphenomics.0221
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
An open-source software for field-based plant phenotyping, Precision Plots Analyzer (PREPs), was developed using Window.NET. The software runs on 64-bit Windows computers. This software allows the extraction of phenotypic traits on a per-microplot basis from orthomosaic and digital surface model (DSM) images generated by Structure-from-Motion/Multi-View-Stereo (SfM-MVS) tools. Moreover, there is no need to acquire skills in geographical information system (GIS) or programming languages for image analysis. Three use cases illustrated the software's functionality. The first involved monitoring the growth of sugar beet varieties in an experimental field using an unmanned aerial vehicle (UAV), where differences among varieties were detected through estimates of crop height, coverage, and volume index. Second, mixed varieties of potato crops were estimated using a UAV and varietal differences were observed from the estimated phenotypic traits. A strong correlation was observed between the manually measured crop height and UAV-estimated crop height. Finally, using a multicamera array attached to a tractor, the height, coverage, and volume index of the 3 potato varieties were precisely estimated. PREPs software is poised to be a useful tool that allows anyone without prior knowledge of programming to extract crop traits for phenotyping.
引用
收藏
页数:10
相关论文
共 16 条
[1]   A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects [J].
Arvidsson, Samuel ;
Perez-Rodriguez, Paulino ;
Mueller-Roeber, Bernd .
NEW PHYTOLOGIST, 2011, 191 (03) :895-907
[2]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[3]   Global Wheat Head Detection 2021: An Improved Dataset for Benchmarking Wheat Head Detection Methods [J].
David, Etienne ;
Serouart, Mario ;
Smith, Daniel ;
Madec, Simon ;
Velumani, Kaaviya ;
Liu, Shouyang ;
Wang, Xu ;
Pinto, Francisco ;
Shafiee, Shahameh ;
Tahir, Izzat S. A. ;
Tsujimoto, Hisashi ;
Nasuda, Shuhei ;
Zheng, Bangyou ;
Kirchgessner, Norbert ;
Aasen, Helge ;
Hund, Andreas ;
Sadhegi-Tehran, Pouria ;
Nagasawa, Koichi ;
Ishikawa, Goro ;
Dandrifosse, Sebastien ;
Carlier, Alexis ;
Dumont, Benjamin ;
Mercatoris, Benoit ;
Evers, Byron ;
Kuroki, Ken ;
Wang, Haozhou ;
Ishii, Masanori ;
Badhon, Minhajul A. ;
Pozniak, Curtis ;
LeBauer, David Shaner ;
Lillemo, Morten ;
Poland, Jesse ;
Chapman, Scott ;
de Solan, Benoit ;
Baret, Frederic ;
Stavness, Ian ;
Guo, Wei .
PLANT PHENOMICS, 2021, 2021
[4]   HSI-PP: A flexible open-source software for hyperspectral imaging-based plant phenotyping [J].
ElManawy, Ahmed Islam ;
Sun, Dawei ;
Abdalla, Alwaseela ;
Zhu, Yueming ;
Cen, Haiyan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
[5]   Computer vision and machine learning enabled soybean root phenotyping pipeline [J].
Falk, Kevin G. ;
Jubery, Talukder Z. ;
Mirnezami, Seyed, V ;
Parmley, Kyle A. ;
Sarkar, Soumik ;
Singh, Arti ;
Ganapathysubramanian, Baskar ;
Singh, Asheesh K. .
PLANT METHODS, 2020, 16 (01)
[6]   Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.) [J].
Feng, Guoyi ;
Luo, Honghai ;
Zhang, Yali ;
Gou, Ling ;
Yao, Yandi ;
Lin, Yongzeng ;
Zhang, Wangfeng .
CROP JOURNAL, 2016, 4 (06) :499-508
[7]   PlantCV v2: Image analysis software for high-throughput plant phenotyping [J].
Gehan, Malia A. ;
Fahlgren, Noah ;
Abbasi, Arash ;
Berry, Jeffrey C. ;
Callen, Steven T. ;
Chavez, Leonardo ;
Doust, Andrew N. ;
Feldman, Max J. ;
Gilbert, Kerrigan B. ;
Hodge, John G. ;
Hoyer, J. Steen ;
Lin, Andy ;
Liu, Suxing ;
Lizarraga, Cesar ;
Lorence, Argelia ;
Miller, Michael ;
Platon, Eric ;
Tessman, Monica ;
Sax, Tony .
PEERJ, 2017, 5
[8]   EasyPCC: Benchmark Datasets and Tools for High-Throughput Measurement of the Plant Canopy Coverage Ratio under Field Conditions [J].
Guo, Wei ;
Zheng, Bangyou ;
Duan, Tao ;
Fukatsu, Tokihiro ;
Chapman, Scott ;
Ninomiya, Seishi .
SENSORS, 2017, 17 (04)
[9]   Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model [J].
Guo, Wei ;
Rage, Uday K. ;
Ninomiya, Seishi .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2013, 96 :58-66
[10]   HTPheno: An image analysis pipeline for high-throughput plant phenotyping [J].
Hartmann, Anja ;
Czauderna, Tobias ;
Hoffmann, Roberto ;
Stein, Nils ;
Schreiber, Falk .
BMC BIOINFORMATICS, 2011, 12