Preliminary study on DCE-MRI radiomics analysis for differentiation of HER2-low and HER2-zero breast cancer

被引:3
作者
Yin, Liang [1 ,2 ]
Zhang, Yun [3 ,4 ]
Wei, Xi [2 ,5 ]
Shaibu, Zakari [6 ]
Xiang, Lingling [2 ,4 ]
Wu, Ting [5 ]
Zhang, Qing [2 ,7 ]
Qin, Rong [2 ,8 ]
Shan, Xiuhong [2 ,4 ]
机构
[1] Jiangsu Univ, Affiliated Peoples Hosp, Dept Breast Surg, Zhenjiang, Peoples R China
[2] Nanjing Med Univ, Zhenjiang Clin Med Coll, Zhenjiang, Peoples R China
[3] Jiangsu Univ, Sch Med Imaging, Zhenjiang, Peoples R China
[4] Jiangsu Univ, Affiliated Peoples Hosp, Dept Radiol, Zhenjiang, Peoples R China
[5] Jiangsu Univ, Affiliated Peoples Hosp, Dept Pathol, Zhenjiang, Peoples R China
[6] Jiangsu Univ, Sch Med, Zhenjiang, Jiangsu, Peoples R China
[7] Jiangsu Univ, Affiliated Peoples Hosp, Dept Ultrasound, Zhenjiang, Peoples R China
[8] Jiangsu Univ, Affiliated Peoples Hosp, Dept Med Oncol, Zhenjiang, Peoples R China
关键词
HER2-low; HER2-zero; breast cancer; DCE-MRI; radiomics analysis; nomogram; AMPLIFICATION; HETEROGENEITY; TUMOR;
D O I
10.3389/fonc.2024.1385352
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose This study aims to evaluate the utility of radiomic features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in distinguishing HER2-low from HER2-zero breast cancer.Patients and methods We retrospectively analyzed 118 MRI cases, including 78 HER2-low and 40 HER2-zero patients confirmed by immunohistochemistry or fluorescence in situ hybridization. From each DCE-MRI case, 960 radiomic features were extracted. These features were screened and reduced using intraclass correlation coefficient, Mann-Whitney U test, and least absolute shrinkage to establish rad-scores. Logistic regression (LR) assessed the model's effectiveness in distinguishing HER2-low from HER2-zero. A clinicopathological MRI characteristic model was constructed using univariate and multivariate analysis, and a nomogram was developed combining rad-scores with significant MRI characteristics. Model performance was evaluated using the receiver operating characteristic (ROC) curve, and clinical benefit was assessed with decision curve analysis.Results The radiomics model, clinical model, and nomogram successfully distinguished between HER2-low and HER2-zero. The radiomics model showed excellent performance, with area under the curve (AUC) values of 0.875 in the training set and 0.845 in the test set, outperforming the clinical model (AUC = 0.691 and 0.672, respectively). HER2 status correlated with increased rad-score and Time Intensity Curve (TIC). The nomogram outperformed both models, with AUC, sensitivity, and specificity values of 0.892, 79.6%, and 82.8% in the training set, and 0.886, 83.3%, and 90.9% in the test set.Conclusions The DCE-MRI-based nomogram shows promising potential in differentiating HER2-low from HER2-zero status in breast cancer patients.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms [J].
Akselrod-Ballin, Ayelet ;
Chorev, Michal ;
Shoshan, Yoel ;
Spiro, Adam ;
Hazan, Alon ;
Melamed, Roie ;
Barkan, Ella ;
Herzel, Esma ;
Naor, Shaked ;
Karavani, Ehud ;
Koren, Gideon ;
Goldscbmidt, Yaara ;
Shalev, Varda ;
Rosen-Zvi, Michal ;
Guindy, Michal .
RADIOLOGY, 2019, 292 (02) :331-342
[2]   Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study [J].
Banerji, Udai ;
van Herpen, Carla M. L. ;
Saura, Cristina ;
Thistiethwaite, Fiona ;
Lord, Simon ;
Moreno, Victor ;
Macpherson, Iain R. ;
Boni, Valentina ;
Rolfo, Christian ;
de Vries, Elisabeth G. E. ;
Rottey, Sylvie ;
Geenen, Jilt ;
Eskens, Ferry ;
Gil-Martin, Marta ;
Mommers, Ellen C. ;
Koper, Norbert P. ;
Aftimos, Philippe .
LANCET ONCOLOGY, 2019, 20 (08) :1124-1135
[3]   Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk [J].
Berg, Wendie A. ;
Zhang, Zheng ;
Lehrer, Daniel ;
Jong, Roberta A. ;
Pisano, Etta D. ;
Barr, Richard G. ;
Boehm-Velez, Marcela ;
Mahoney, Mary C. ;
Evans, W. Phil, III ;
Larsen, Linda H. ;
Morton, Marilyn J. ;
Mendelson, Ellen B. ;
Farria, Dione M. ;
Cormack, Jean B. ;
Marques, Helga S. ;
Adams, Amanda ;
Yeh, Nolin M. ;
Gabrielli, Glenna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (13) :1394-1404
[4]   MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer [J].
Bitencourt, Almir G., V ;
Gibbs, Peter ;
Saccarelli, Carolina Rossi ;
Daimiel, Isaac ;
Lo Gullo, Roberto ;
Fox, Michael J. ;
Thakur, Sunitha ;
Pinker, Katja ;
Morris, Elizabeth A. ;
Morrow, Monica ;
Jochelson, Maxine S. .
EBIOMEDICINE, 2020, 61
[5]   HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors [J].
Blackwell, KL ;
Dewhirst, MW ;
Liotcheva, V ;
Snyder, S ;
Broadwater, G ;
Bentley, R ;
Lal, A ;
Riggins, G ;
Anderson, S ;
Vredenburgh, J ;
Proia, A ;
Harris, LN .
CLINICAL CANCER RESEARCH, 2004, 10 (12) :4083-4088
[6]   Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Cardoso, F. ;
Kyriakides, S. ;
Ohno, S. ;
Penault-Llorca, F. ;
Poortmans, P. ;
Rubio, I. T. ;
Zackrisson, S. ;
Senkus, E. .
ANNALS OF ONCOLOGY, 2019, 30 (08) :1194-1220
[7]   Prediction of HER2 expression in breast cancer by combining PET/CT radiomic analysis and machine learning [J].
Chen, Yiwen ;
Wang, Ziyang ;
Yin, Guotao ;
Sui, Chunxiao ;
Liu, Zifan ;
Li, Xiaofeng ;
Chen, Wei .
ANNALS OF NUCLEAR MEDICINE, 2022, 36 (02) :172-182
[8]   Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer [J].
Choi, Eun Jung ;
Choi, HyeMi ;
Choi, Sin Ae ;
Youk, Ji Hyun .
MEDICINE, 2016, 95 (48) :e5330
[9]   Evolving standards of care and new challenges in the management of HER2-positive breast cancer [J].
Choong, Grace M. ;
Cullen, Grace D. ;
O'Sullivan, Ciara C. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2020, 70 (05) :355-374
[10]   De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017 (vol 28, pg 1700, 2017) [J].
Curigliano, G. ;
Burstein, H. J. ;
Winer, E. P. ;
Gnant, M. ;
Dubsky, P. ;
Loibl, S. ;
Colleoni, M. ;
Regan, M. M. ;
Piccart-Gebhart, M. ;
Senn, H. -J ;
Thurlimann, B. ;
Andre, F. ;
Baselga, J. ;
Bergh, J. ;
Bonnefoi, H. ;
Brucker, S. Y. ;
Cardoso, F. ;
Carey, L. ;
Ciruelos, E. ;
Cuzick, J. ;
Denkert, C. ;
Di Leo, A. ;
Ejlertsen, B. ;
Francis, P. ;
Galimberti, V. ;
Garber, J. ;
Gulluoglu, B. ;
Goodwin, P. ;
Harbeck, N. ;
Hayes, D. F. ;
Huang, C. -S. ;
Huober, J. ;
Khaled, H. ;
Jassem, J. ;
Jiang, Z. ;
Karlsson, P. ;
Morrow, M. ;
Orecchia, R. ;
Osborne, K. C. ;
Pagani, O. ;
Partridge, A. H. ;
Pritchard, K. ;
Ro, J. ;
Rutgers, E. J. T. ;
Sedlmayer, F. ;
Semiglazov, V. ;
Shao, Z. ;
Smith, I. ;
Toi, M. ;
Tutt, A. .
ANNALS OF ONCOLOGY, 2019, 30 (07) :1181-1181