Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis

被引:0
作者
De Rosa, Alessandro Pasquale [1 ]
Benedetto, Marco [2 ,3 ]
Tagliaferri, Stefano [2 ]
Bardozzo, Francesco [3 ]
D'Ambrosio, Alessandro [1 ]
Bisecco, Alvino [1 ]
Gallo, Antonio [1 ]
Cirillo, Mario [1 ]
Tagliaferri, Roberto [3 ]
Esposito, Fabrizio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci, Piazza Luigi Miraglia 2, IT-80138 Naples, Italy
[2] Kelyon Srl, Via Benedetto Brin,59 C5-C6, I-80142 Naples, Italy
[3] Univ Salerno, NeuRoNe Lab, DISA MIS, I-84084 Fisciano, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Multiple sclerosis; Lesion segmentation; Consensus; MRI; Label fusion; Machine learning; WHITE-MATTER LESIONS; AUTOMATED SEGMENTATION; LOAD; OPTIMIZATION; REGISTRATION; PROGRESSION; DISABILITY; ROBUST;
D O I
10.1038/s41598-024-72649-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation of multiple sclerosis (MS) lesions on brain MRI scans is crucial for diagnosis, disease and treatment monitoring but is a time-consuming task. Despite several automated algorithms have been proposed, there is still no consensus on the most effective method. Here, we applied a consensus-based framework to improve lesion segmentation on T1-weighted and FLAIR scans. The framework is designed to combine publicly available state-of-the-art deep learning models, by running multiple segmentation tasks before merging the outputs of each algorithm. To assess the effectiveness of the approach, we applied it to MRI datasets from two different centers, including a private and a public dataset, with 131 and 30 MS patients respectively, with manually segmented lesion masks available. No further training was performed for any of the included algorithms. Overlap and detection scores were improved, with Dice increasing by 4-8% and precision by 3-4% respectively for the private and public dataset. High agreement was obtained between estimated and true lesion load (rho = 0.92 and rho = 0.97) and count (rho = 0.83 and rho = 0.94). Overall, this framework ensures accurate and reliable results, exploiting complementary features and overcoming some of the limitations of individual algorithms.
引用
收藏
页数:12
相关论文
共 54 条
  • [1] Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data
    Artaechevarria, Xabier
    Munoz-Barrutia, Arrate
    Ortiz-de-Solorzano, Carlos
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) : 1266 - 1277
  • [2] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    [J]. NEUROIMAGE, 2019, 196 : 1 - 15
  • [3] Role of artificial intelligence in MS clinical practice
    Bonacchi, Raffaello
    Filippi, Massimo
    Rocca, Maria A.
    [J]. NEUROIMAGE-CLINICAL, 2022, 35
  • [4] Reproducibility of Lesion Count in Various Subregions on MRI Scans in Multiple Sclerosis
    Bozsik, Bence
    Toth, Eszter
    Polyak, Ilona
    Kerekes, Fanni
    Szabo, Nikoletta
    Bencsik, Krisztina
    Klivenyi, Peter
    Kincses, Zsigmond Tamas
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [5] Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study
    Burggraaff, Jessica
    Liu, Yao
    Prieto, Juan C.
    Simoes, Jorge
    de Sitter, Alexandra
    Ruggieri, Serena
    Brouwer, Iman
    Lissenberg-Witte, Birgit, I
    Rocca, Mara A.
    Valsasina, Paola
    Ropele, Stefan
    Gasperini, Claudio
    Gallo, Antonio
    Pareto, Deborah
    Sastre-Garriga, Jaume
    Enzinger, Christian
    Filippi, Massimo
    De Stefano, Nicola
    Ciccarelli, Olga
    Hulst, Hanneke E.
    Wattjes, Mike P.
    Barkhof, Frederik
    Uitdehaag, Bernard M. J.
    Vrenken, Hugo
    Guttmann, Charles R. G.
    [J]. NEUROIMAGE-CLINICAL, 2021, 29
  • [6] Association of Brain Atrophy With Disease Progression Independent of Relapse Activity in Patients With Relapsing Multiple Sclerosis
    Cagol, Alessandro
    Schaedelin, Sabine
    Barakovic, Muhamed
    Benkert, Pascal
    Todea, Ramona-Alexandra
    Rahmanzadeh, Reza
    Galbusera, Riccardo
    Lu, Po-Jui
    Weigel, Matthias
    Melie-Garcia, Lester
    Ruberte, Esther
    Siebenborn, Nina
    Battaglini, Marco
    Radue, Ernst-Wilhelm
    Yaldizli, Ozgur
    Oechtering, Johanna
    Sinnecker, Tim
    Lorscheider, Johannes
    Fischer-Barnicol, Bettina
    Mueller, Stefanie
    Achtnichts, Lutz
    Vehoff, Jochen
    Disanto, Giulio
    Findling, Oliver
    Chan, Andrew
    Salmen, Anke
    Pot, Caroline
    Bridel, Claire
    Zecca, Chiara
    Derfuss, Tobias
    Lieb, Johanna M.
    Remonda, Luca
    Wagner, Franca
    Vargas, Maria, I
    Du Pasquier, Renaud
    Lalive, Patrice H.
    Pravata, Emanuele
    Weber, Johannes
    Cattin, Philippe C.
    Gobbi, Claudio
    Leppert, David
    Kappos, Ludwig
    Kuhle, Jens
    Granziera, Cristina
    [J]. JAMA NEUROLOGY, 2022, 79 (07) : 682 - 692
  • [7] Cortical lesion load associates with progression of disability in multiple sclerosis
    Calabrese, Massimiliano
    Poretto, Valentina
    Favaretto, Alice
    Alessio, Sara
    Bernardi, Valentina
    Romualdi, Chiara
    Rinaldi, Francesca
    Perini, Paola
    Gallo, Paolo
    [J]. BRAIN, 2012, 135 : 2952 - 2961
  • [8] Evaluating White Matter Lesion Segmentations with Refined SOrensen-Dice Analysis
    Carass, Aaron
    Roy, Snehashis
    Gherman, Adrian
    Reinhold, Jacob C.
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handels, Heinz
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Pham, Dzung L.
    Crainiceanu, Ciprian M.
    Calabresi, Peter A.
    Prince, Jerry L.
    Roncal, William R. Gray
    Shinohara, Russell T.
    Oguz, Ipek
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [10] Investigating Functional Network Abnormalities and Associations With Disability in Multiple Sclerosis
    Carotenuto, Antonio
    Valsasina, Paola
    Schoonheim, Menno M.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    Gallo, Antonio
    Tedeschi, Gioacchino
    Tommasin, Silvia
    Pantano, Patrizia
    Filippi, Massimo
    Rocca, Maria A.
    MAGNIMS Study Grp
    [J]. NEUROLOGY, 2022, 99 (22) : E2517 - E2530