Feature Selection with L1 Regularization in Formal Neurons

被引:0
|
作者
Bobrowski, Leon [1 ,2 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45A, Bialystok, Poland
[2] Inst Biocybernet & Biomed Engn, PAS, Warsaw, Poland
来源
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024 | 2024年 / 2141卷
关键词
high-dimensional data sets; formal neurons with a margin; feature selection; CPL criterion functions; L-1; regularization;
D O I
10.1007/978-3-031-62495-7_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing classifiers on high-dimensional learning data sets is an important task that appears in artificial intelligence applications. Designing classifiers for high-dimensional data involves learning hierarchical neural networks combined with feature selection. Feature selection aims to omit features that are unnecessary for a given problem. Feature selection in formal meurons can be achieved by minimizing convex and picewise linear (CPL) criterion functions with L-1 regularization. Minimizing CPL criterion functions can be associated with computations on a finite number of vertices in the parameter space.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [21] AN l1 - lp DC REGULARIZATION METHOD FOR COMPRESSED SENSING
    Cao, Wenhe
    Ku, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1889 - 1901
  • [22] l1 Regularization in Two-Layer Neural Networks
    Li, Gen
    Gu, Yuantao
    Ding, Jie
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 135 - 139
  • [23] Representer Theorems for Sparsity-Promoting l1 Regularization
    Unser, Michael
    Fageot, Julien
    Gupta, Harshit
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5167 - 5180
  • [24] Sparse SAR imaging based on L1/2 regularization
    ZENG JinShan
    ScienceChina(InformationSciences), 2012, 55 (08) : 1755 - 1775
  • [25] Structure Optimization of Neural Networks with L1 Regularization on Gates
    Chang, Qin
    Wang, Junze
    Zhang, Huaqing
    Shi, Lina
    Wang, Jian
    Pal, Nikhil R.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 196 - 203
  • [26] Sparse SAR imaging based on L1/2 regularization
    JinShan Zeng
    Jian Fang
    ZongBen Xu
    Science China Information Sciences, 2012, 55 : 1755 - 1775
  • [27] Collaborative Spectrum Sensing via L1/2 Regularization
    Liu, Zhe
    Li, Feng
    Duan, WenLei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (01): : 445 - 449
  • [28] Speech Enhancement Based on L1 Regularization in the Cepstral Domain
    Shen, Tak-Wai
    Lun, Daniel P. K.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 121 - 124
  • [29] Hyperspectral Unmixing Based on Weighted L1/2 Regularization
    Li, Yan
    Li, Kai
    2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2016, : 400 - 404
  • [30] Embedded heterogeneous feature selection for conjoint analysis: A SVM approach using L1 penalty
    Sebastián Maldonado
    Ricardo Montoya
    Julio López
    Applied Intelligence, 2017, 46 : 775 - 787