On the Hilbert 2-class fields of some real quadratic number fields and applications

被引:0
作者
Aaboun, B. [1 ]
Zekhnini, A. [1 ]
机构
[1] Mohammed Premier Univ, Math Dept, Oujda, Morocco
关键词
Quadratic fields; Hilbert 2-Class field; Metabelian; 2-group; Metacyclic; 2-class group; Capitulation problem; CAPITULATION; IDEALS;
D O I
10.1007/s12215-024-01096-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k=Q(p1p2q1q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {k}=\mathbb {Q}(\sqrt{p_{1}p_{2}q_{1}q_{2}})$$\end{document} be a real quadratic number field, where pi equivalent to-qi equivalent to 1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{i}\equiv -q_{i}\equiv 1 \pmod 4$$\end{document}, i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, 2$$\end{document}, are different prime integers and Ck,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{C}_{\mathbb {k}, 2}$$\end{document} its 2-class group. Let k2(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {k}_2<^>{(1)}$$\end{document} (resp. k2(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {k}_2<^>{(2)}$$\end{document}) be the first (resp. second) Hilbert 2-class field of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {k}$$\end{document}. In this article, we investigate the metacyclicity of G=Gal(k2(2)/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=Gal(\mathbb {k}_{2}<^>{(2)}/\mathbb {k})$$\end{document} and the cyclicity of G '=Gal(k2(2)/k2(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'=Gal(\mathbb {k}_{2}<^>{(2)}/\mathbb {k}_{2}<^>{(1)})$$\end{document}, the derived subgroup of G, assuming Ck,2 similar or equal to G/G 'similar or equal to Z/2ZxZ/2nZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{C}_{\mathbb {k}, 2}\simeq G/G'\simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2<^>{n}\mathbb {Z}$$\end{document}, with n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. As application we study the capitulation of Ck,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{C}_{\mathbb {k}, 2}$$\end{document} in the quadratic and biquadratic subfields of k2(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {k}_{2}<^>{(1)}$$\end{document}.
引用
收藏
页码:3277 / 3298
页数:22
相关论文
共 30 条
  • [1] Aaboun B, 2023, RES NUMBER THEORY, V9, DOI 10.1007/s40993-023-00461-x
  • [2] Capitulation of 2 classes of ideals of k=Q(√2pq,i) where p-q1 mod 4
    Azizi, A
    [J]. ACTA ARITHMETICA, 2000, 94 (04) : 383 - 399
  • [3] Azizi A., 2015, INT J PURE APPL MATH, V103, P99
  • [4] Azizi A., 2024, COMMUN MATH, V32, P157
  • [5] Structure of the Galois group of the maximal unramified pro-2-extension of some Z2-extensions
    Azizi, Abdelmalek
    Rezzougui, Mohammed
    Zekhnini, Abdelkader
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (1-2): : 11 - 28
  • [6] Azizi A, 2021, PERIOD MATH HUNG, V83, P54, DOI 10.1007/s10998-020-00362-x
  • [7] On the Hilbert 2-class field of some quadratic number fields
    Azizi, Abdelmalek
    Rezzougui, Mohammed
    Taous, Mohammed
    Zekhnini, Abdelkader
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (04) : 807 - 824
  • [8] Real quadratic fields with abelian 2-class field tower
    Benjamin, E
    Lemmermeyer, F
    Snyder, C
    [J]. JOURNAL OF NUMBER THEORY, 1998, 73 (02) : 182 - 194
  • [9] Real quadratic number fields with 2-class group of type (2,2)
    Benjamin, E
    Snyder, C
    [J]. MATHEMATICA SCANDINAVICA, 1995, 76 (02) : 161 - 178
  • [10] Imaginary quadratic fields k with cyclic Cl2(k1)
    Benjamin, E
    Lemmermeyer, F
    Snyder, C
    [J]. JOURNAL OF NUMBER THEORY, 1997, 67 (02) : 229 - 245