Investigation of shrinkage mechanism of alkali-activated slag

被引:2
作者
Wei, Yongfeng [1 ,2 ,3 ]
Dou, Hui [3 ]
He, Tingting [4 ]
Song, Kunkun [1 ,2 ]
Zhang, Qiangqiang [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Civil Engn & Mech, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Minist Educ China, Key Lab Mech Disaster & Environm Western China, Lanzhou 730000, Peoples R China
[3] Gansu Rd & Bridge Construction Grp Co Ltd, Lanzhou 730000, Peoples R China
[4] Lanzhou Bowen Coll Sci & Technol, Sch Mech & Elect Engn, Lanzhou 730000, Peoples R China
关键词
Alkali -activated slag; Shrinkage; Nanoindentation; Creep Modulus; Microstructure; Oil shale semi -coke; OSS modified AAS; BLAST-FURNACE SLAG; AUTOGENOUS SHRINKAGE; HYDRATION PRODUCTS; INTERIOR HUMIDITY; DRYING SHRINKAGE; ELASTIC-MODULUS; GEOPOLYMERS; CONCRETE; CEMENT; MICROSTRUCTURE;
D O I
10.1016/j.cscm.2024.e03493
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Slag is a highly active waste product that can be added to alkali-activated cement to improve their mechanical properties, but also creates significant shrinkage, which limits its usefulness. This study examines the reasons behind the shrinkage of alkali-activated slag (AAS). The research uses a comprehensive approach that includes linear shrinkage testing, comparative chemical analysis, microscopic structural characterization, internal relative humidity evaluations, pore size distribution assessments, and nanoindentation testing. The results show that AAS has more chemical shrinkage, self-drying shrinkage, and drying shrinkage than ordinary Portland cement. AAS's shrinkage deformation increases with variations in the activator modulus. Chemical reactions that produce aluminosilicate gel with smaller particle sizes and lower bound water are the primary factors contributing to chemical shrinkage in AAS. The high self-drying and drying shrinkage of AAS can be attributed to several factors: AAS experiences a more rapid decrease in internal humidity during the early curing stages, AAS materials typically exhibit smaller most probable pore sizes, and hardened AAS products tend to have a lower creep modulus. The addition of oil shale semi-coke (OSS) to AAS can modify the composition and microstructure of the reaction products, resulting in an increase in porous reaction products and ultimately reducing shrinkage. This study's findings are significant for understanding the causes and potential solutions for alkaliactivated cement shrinkage issues.
引用
收藏
页数:16
相关论文
共 66 条
  • [1] Development of geopolymer mortar under ambient temperature for in situ applications
    Al-Majidi, Mohammed Haloob
    Lampropoulos, Andreas
    Cundy, Andrew
    Meikle, Steve
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2016, 120 : 198 - 211
  • [2] Aldred J., 2015, Geopolymer concrete - no longer labcrete!
  • [3] [Anonymous], 2009, Autogenous shrinkage in cementitious systems
  • [4] Effect of activator type and content on properties of alkali-activated slag mortars
    Aydin, Serdar
    Baradan, Bulent
    [J]. COMPOSITES PART B-ENGINEERING, 2014, 57 : 166 - 172
  • [5] Cement and carbon emissions
    Barcelo, Laurent
    Kline, John
    Walenta, Gunther
    Gartner, Ellis
    [J]. MATERIALS AND STRUCTURES, 2014, 47 (06) : 1055 - 1065
  • [6] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2012, 42 (01) : 74 - 83
  • [7] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2011, 41 (09) : 955 - 963
  • [8] Global strategies and potentials to curb CO2 emissions in cement industry
    Benhelal, Emad
    Zahedi, Gholamreza
    Shamsaei, Ezzatollah
    Bahadori, Alireza
    [J]. JOURNAL OF CLEANER PRODUCTION, 2013, 51 : 142 - 161
  • [9] Mitigation strategies for autogenous shrinkage cracking
    Bentz, DP
    Jensen, OM
    [J]. CEMENT & CONCRETE COMPOSITES, 2004, 26 (06) : 677 - 685
  • [10] MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders
    Bernal, Susan A.
    Nicolas, Rackel San
    Myers, Rupert J.
    Mejia de Gutierrez, Ruby
    Puertas, Francisca
    van Deventer, Jannie S. J.
    Provis, John L.
    [J]. CEMENT AND CONCRETE RESEARCH, 2014, 57 : 33 - 43