Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease

被引:1
|
作者
Li, Wenjin [1 ]
Chang, Xiaoyu [2 ]
Zhou, Hang [1 ]
Yu, Wenquan [1 ]
Wang, Ruiyong [1 ]
Chang, Junbiao [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Pingyuan Lab, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Coll Pharm, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
fluorescence; inhibitors; main protease; molecular docking; MEDIATED OXIDATIVE STRESS; SERUM-ALBUMIN; IN-SILICO; DOCKING; FLUORESCENCE; INDOLE-3-CARBINOL; CORONAVIRUS; MECHANISM; BISINDOLE; APOPTOSIS;
D O I
10.1002/jmr.3101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 mu M) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 x 10(5) Lmol(-1)), the quenching constant (5.41 x 10(5) Lmol(-1)), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus
    Eleftheriou, Phaedra
    Amanatidou, Dionysia
    Petrou, Anthi
    Geronikaki, Athina
    MOLECULES, 2020, 25 (11):
  • [42] A cyclic peptide inhibitor of the SARS-CoV-2 main protease
    Kreutzer, Adam G.
    Krumberger, Maj
    Diessner, Elizabeth M.
    Parrocha, Chelsea Marie T.
    Morris, Michael A.
    Guaglianone, Gretchen
    Butts, Carter T.
    Nowick, James S.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021, 221
  • [43] Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study
    Kumar, Anuj
    Mishra, Dwijesh Chandra
    Angadi, Ulavappa Basavanneppa
    Yadav, Rashmi
    Rai, Anil
    Kumar, Dinesh
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [44] Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease
    Gogoi, Neelutpal
    Chowdhury, Purvita
    Goswami, Ashis Kumar
    Das, Aparoop
    Chetia, Dipak
    Gogoi, Bhaskarjyoti
    MOLECULAR DIVERSITY, 2021, 25 (03) : 1745 - 1759
  • [45] Chondroitin sulfate binds to main protease of SARS-CoV-2 and efficaciously inhibits its activity
    Li, Jinwen
    Li, Shu Jie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [46] In silico approach identified benzoylguanidines as SARS-CoV-2 main protease (Mpro) potential inhibitors
    de Santiago-Silva, Kaio Maciel
    Camargo, Priscila
    da Silva Gomes, Gabriel Felix
    Sotero, Ana Paula
    Orsato, Alexandre
    Perez, Carla Cristina
    Nakazato, Gerson
    da Silva Lima, Camilo Henrique
    Bispo, Marcelle
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (16) : 7686 - 7699
  • [47] Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study
    Baby, Krishnaprasad
    Maity, Swastika
    Mehta, Chetan H.
    Suresh, Akhil
    Nayak, Usha Y.
    Nayak, Yogendra
    ARCHIVES OF MEDICAL RESEARCH, 2021, 52 (01) : 38 - 47
  • [48] Molecular Docking of Novel 5-O-benzoylpinostrobin Derivatives as SARS-CoV-2 Main Protease Inhibitors
    Pratama, Mohammad Rizki Fadhil
    Poerwono, Hadi
    Siswodihardjo, Siswandono
    PHARMACEUTICAL SCIENCES, 2020, 26 : S63 - S77
  • [49] In silico assessment of diterpenes as potential inhibitors of SARS-COV-2 main protease
    Abdelrady, Yousef A.
    Ashraf, Naeem Mahmood
    Hamid, Arslan
    Thabet, Hayam S.
    Sayed, Asmaa M.
    Salem, Shimaa H.
    Hassanein, Emad H. M.
    Sayed, Ahmed M.
    FUTURE VIROLOGY, 2023, 18 (05) : 295 - 308
  • [50] Computational study on the affinity of potential drugs to SARS-CoV-2 main protease
    Martin, Veronica
    Sanz-Novo, Miguel
    Leon, Iker
    Redondo, Pilar
    Largo, Antonio
    Barrientos, Carmen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (29)