Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease

被引:1
|
作者
Li, Wenjin [1 ]
Chang, Xiaoyu [2 ]
Zhou, Hang [1 ]
Yu, Wenquan [1 ]
Wang, Ruiyong [1 ]
Chang, Junbiao [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Pingyuan Lab, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Coll Pharm, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
fluorescence; inhibitors; main protease; molecular docking; MEDIATED OXIDATIVE STRESS; SERUM-ALBUMIN; IN-SILICO; DOCKING; FLUORESCENCE; INDOLE-3-CARBINOL; CORONAVIRUS; MECHANISM; BISINDOLE; APOPTOSIS;
D O I
10.1002/jmr.3101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 mu M) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 x 10(5) Lmol(-1)), the quenching constant (5.41 x 10(5) Lmol(-1)), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Potent and biostable inhibitors of the main protease of SARS-CoV-2
    Tsuji, Kohei
    Ishii, Takahiro
    Kobayakawa, Takuya
    Higashi-Kuwata, Nobuyo
    Azuma, Chika
    Nakayama, Miyuki
    Onishi, Takato
    Nakano, Hiroki
    Wada, Naoya
    Hori, Miki
    Shinohara, Kouki
    Miura, Yutaro
    Kawada, Takuma
    Hayashi, Hironori
    Hattori, Shin-ichiro
    Bulut, Haydar
    Das, Debananda
    Takamune, Nobutoki
    Kishimoto, Naoki
    Saruwatari, Junji
    Okamura, Tadashi
    Nakano, Kenta
    Misumi, Shogo
    Mitsuya, Hiroaki
    Tamamura, Hirokazu
    ISCIENCE, 2022, 25 (11)
  • [22] Virtual screening of peptides with high affinity for SARS-CoV-2 main protease
    Porto, William Farias
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [23] Interaction of panduratin A and derivatives with the SARS-CoV-2 main protease (mpro): a molecular docking study
    Vergoten, Gerard
    Bailly, Christian
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (14) : 6834 - 6844
  • [24] Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity
    Li, Jinwen
    Zhang, Yantao
    Pang, Huimin
    Li, Shu Jie
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 267
  • [25] In Silico Study of Coumarins and Quinolines Derivatives as Potent Inhibitors of SARS-CoV-2 Main Protease
    Yanez, Osvaldo
    Osorio, Manuel Isaias
    Uriarte, Eugenio
    Areche, Carlos
    Tiznado, William
    Perez-Donoso, Jose M.
    Garcia-Beltran, Olimpo
    Gonzalez-Nilo, Fernando
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [26] Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2
    Tripathi, Praveen Kumar
    Upadhyay, Saurabh
    Singh, Manju
    Raghavendhar, Siva
    Bhardwaj, Mohit
    Sharma, Pradeep
    Patel, Ashok Kumar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 : 2622 - 2631
  • [27] Allostery in homodimeric SARS-CoV-2 main protease
    Fornasier, Emanuele
    Fabbian, Simone
    Shehi, Haidi
    Enderle, Janine
    Gatto, Barbara
    Volpin, Daniele
    Biondi, Barbara
    Bellanda, Massimo
    Giachin, Gabriele
    Sosic, Alice
    Battistutta, Roberto
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [28] Investigating the novel acetonitrile derivatives as potential SARS-CoV-2 main protease inhibitor using molecular modeling approach
    Patil, Anandsing Fattesing
    Patil, Vijay Shivaji
    Jaiswal, Dipak Premchand
    Palakhe, Sandip Sumant
    Patil, Sandip Pandurang
    Kumbhar, Bajarang Vasant
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (09) : 3943 - 3955
  • [29] Insights into the Interaction Mechanism of Boceprevir with SARS-CoV-2 Main Protease
    Kaur, Gurmeet
    Goyal, Bhupesh
    CHEMISTRYSELECT, 2023, 8 (28):
  • [30] A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process
    Noske, Gabriela D.
    Nakamura, Aline Minali
    Gawriljuk, Victor O.
    Fernandes, Rafaela S.
    Lima, Gustavo M. A.
    Rosa, Higor V. D.
    Pereira, Humberto D.
    Zeri, Ana C. M.
    Nascimento, Andrey F. Z.
    Freire, Marjorie C. L. C.
    Oliva, Glaucius
    Godoy, Andre S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C34 - C34