Deep learning assisted quantitative detection of cardiac troponin I in hierarchical dendritic copper-nickel nanostructure lateral flow immunoassay

被引:0
|
作者
Zhang, Shenglan [1 ,2 ,3 ]
Chen, Liqiang [1 ,2 ]
Tan, Yuxin [3 ]
Wu, Shaojie [1 ,2 ]
Guo, Pengxin [1 ,2 ]
Jiang, Xincheng [1 ,2 ]
Pan, Hongcheng [3 ]
机构
[1] Guilin Univ Technol, Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab Adv Mfg & Automat Technol, Guilin 541006, Peoples R China
[2] Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China
[3] Guilin Univ Technol, Coll Environm Sci & Engn, Guilin 541006, Peoples R China
基金
中国国家自然科学基金;
关键词
CARCINOEMBRYONIC ANTIGEN; FLUORESCENCE; RECOGNITION; COLOR;
D O I
10.1039/d4ay01187b
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The rising demand for point-of-care testing (POCT) in disease diagnosis has made LFIA sensors based on dendritic metal thin film (HD-nanometal) and background fluorescence technology essential for rapid and accurate disease marker detection, thanks to their integrated design, high sensitivity, and cost-effectiveness. However, their unique 3D nanostructures cause significant fluorescence variation, challenging traditional image processing methods in segmenting weak fluorescence regions. This paper develops a deep learning method to efficiently segment target regions in HD-nanometal LFIA sensor images, improving quantitative detection accuracy. We propose an improved UNet++ network with attention and residual modules, accurately segmenting varying fluorescence intensities, especially weak ones. We evaluated the method using IoU and Dice coefficients, comparing it with UNet, Deeplabv3, and UNet++. We used an HD-nanoCu-Ni LFIA sensor for cardiac troponin I (cTnI) as a case study to validate the method's practicality. The proposed method achieved a 96.3% IoU, outperforming other networks. The R2 between characteristic quantity and cTnI concentration reached 0.994, confirming the method's accuracy and reliability. This enhances POCT accuracy and provides a reference for future fluorescence immunochromatography expansion. This paper proposes a deep learning-based method using an improved UNet++ network with attention and residual modules to enhance quantitative detection accuracy in HD-nanoMetal LFIA sensor images.
引用
收藏
页码:6715 / 6725
页数:11
相关论文
共 29 条
  • [1] A novel integrated lateral flow immunoassay platform for the detection of cardiac troponin I using hierarchical dendritic copper-nickel nanostructures
    Tan, Yuxin
    Zhang, Shirong
    Liu, Yilei
    Li, Jishun
    Zhang, Shenglan
    Pan, Hongcheng
    TALANTA, 2024, 277
  • [2] A Cellulose Paper-Based Fluorescent Lateral Flow Immunoassay for the Quantitative Detection of Cardiac Troponin I
    Natarajan, Satheesh
    Jayaraj, Joseph
    Prazeres, Duarte Miguel F.
    BIOSENSORS-BASEL, 2021, 11 (02):
  • [3] A Cellulose Paper-Based Fluorescent Lateral Flow Immunoassay for the Quantitative Detection of Cardiac Troponin I
    Natarajan S.
    Jayaraj J.
    Prazeres D.M.F.
    Biosensors, 2021, 11 (02):
  • [4] Quantitative and rapid lateral flow immunoassay for cardiac troponin I using dendritic mesoporous silica nanoparticles and gold nanoparticles
    Li, Yafei
    Yao, Yu
    Hua, Qingqing
    Li, Jishun
    ANALYTICAL METHODS, 2025, 17 (04) : 698 - 707
  • [5] Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I
    Xu, QuanFu
    Xu, Hong
    Gu, Hongchen
    Li, JingBo
    Wang, Yanyan
    Wei, Meng
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (03): : 702 - 707
  • [6] Evaluation of a modified lateral flow immunoassay for detection of high-sensitivity cardiac troponin I and myoglobin
    Zhu, Jimin
    Zou, Nengli
    Mao, Hongju
    Wang, Ping
    Zhu, Danian
    Ji, Huoyan
    Cong, Hui
    Sun, Changjiang
    Wang, Huimin
    Zhang, Feng
    Qian, Juying
    Jin, Qinghui
    Zhao, Jianlong
    BIOSENSORS & BIOELECTRONICS, 2013, 42 : 522 - 525
  • [7] NOVEL LANTHANIDE NANOPARTICLE LABEL-BASED LATERAL FLOW IMMUNOASSAY FOR DETECTION OF CARDIAC TROPONIN I
    Myyrylainen, T.
    Juhola, K.
    Pettersson, K.
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2011, 49 : S682 - S682
  • [8] Deep learning on lateral flow immunoassay for the analysis of detection data
    Liu, Xinquan
    Du, Kang
    Lin, Si
    Wang, Yan
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [9] Highly Sensitive Chemiluminescence-Based Lateral Flow Immunoassay for Cardiac Troponin I Detection in Human Serum
    Han, Gyeo-Re
    Kim, Min-Gon
    SENSORS, 2020, 20 (09)
  • [10] Sensitive and quantitative detection of cardiac troponin I with upconverting nanoparticle lateral flow test with minimized interference
    Bayoumy, Sherif
    Martiskainen, Iida
    Heikkila, Taina
    Rautanen, Carita
    Hedberg, Pirjo
    Hyytia, Heidi
    Wittfooth, Saara
    Pettersson, Kim
    SCIENTIFIC REPORTS, 2021, 11 (01)