Interface engineering of polymer composite films for high-temperature capacitive energy storage

被引:9
|
作者
Yu, Xiang [1 ,2 ]
Yang, Rui [1 ]
Zhang, Wenqi [1 ]
Yang, Xiao [1 ,2 ]
Ma, Chuang [1 ]
Sun, Kaixuan [1 ]
Shen, Guangyi [1 ]
Lv, Fangcheng [1 ,2 ]
Fan, Sidi [1 ,2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
PEI; BNNS; Interface engineering; Fluorination; High-temperature energy storage; THIN-FILMS; BREAKDOWN STRENGTH; BORON-NITRIDE; EXFOLIATION; PERFORMANCE; DIELECTRICS; TRANSITION; NANOSHEETS;
D O I
10.1016/j.cej.2024.154056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer film capacitors encounter challenges in harsh conditions of high temperatures and electric fields because of large conduction loss and degraded breakdown strength (Eb). Herein, an interface engineering strategy is proposed to fluorinate the interfaces between the polyetherimide (PEI) matrix and wide bandgap boron nitride nanosheets (BNNSs) fillers. The composite films exhibit high-performance capacitive energy storage with a remarkable energy density of 5.73 J/cm3 and an ultrahigh efficiency of 91.22 % in conditions of 575 kV/mm and 150 degrees C. By adopting interfacial fluorination, the band structure of BNNSs is tailored to achieve a type II band alignment with PEI, promoting the dual trapping for both electrons and holes. It highly suppresses leakage current and reduces conduction loss. Typically, introducing fillers can compromise the properties of interfacial layers, creating weak points that trigger breakdown. Conversely, fluorinated interfaces exhibit an increased Young's modulus and a reduced dielectric constant. According to the electromechanical breakdown theory, the interfacial Eb is increased. The breakdown phase propagation along the interfaces is thereby impeded, ultimately resulting in a further increase in overall Eb, reaching up to 589 kV/mm at 150 degrees C. Fluorinated interface engineering addresses interfacial challenges posed by fillers, enabling high-temperature energy storage capability in PEI-based capacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interfacial Engineering Using Covalent Organic Frameworks in Polymer Composites for High-Temperature Electrostatic Energy Storage
    Xie, Zongliang
    Le, Khoi
    Li, He
    Pang, Xi
    Xu, Tianlei
    Altoe, Virginia
    Klivansky, Liana M.
    Wang, Yunfei
    Huang, Zhiyuan
    Shelton, Steve W.
    Gu, Xiaodan
    Liu, Peng
    Peng, Zongren
    Liu, Yi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [22] Scalable graphene fluoride sandwiched aramid nanofiber paper with superior high-temperature capacitive energy storage
    Vu, Minh Canh
    Kang, Hyoungku
    Park, Pyeong Jun
    Choi, Bong-Gil
    Paik, Jong-Woo
    Choi, Won-Kook
    Islam, Md Akhtarul
    Wang, Qing
    Kim, Sung-Ryong
    CHEMICAL ENGINEERING JOURNAL, 2022, 444
  • [23] Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation
    Bao, Zhiwei
    Ding, Song
    Dai, Zhizhan
    Wang, Yiwei
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    MATERIALS HORIZONS, 2023, 10 (06) : 2120 - 2127
  • [24] Sandwich-structured SrTiO 3 /PEI composite films with high-temperature energy storage performance
    Jin, Zhao
    Lin, Ying
    Wang, Yifei
    Yang, Haibo
    JOURNAL OF POWER SOURCES, 2024, 609
  • [25] Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage
    Ai, Ding
    Li, He
    Zhou, Yao
    Ren, Lulu
    Han, Zhubing
    Yao, Bin
    Zhou, Wei
    Zhao, Ling
    Xu, Jianmei
    Wang, Qing
    ADVANCED ENERGY MATERIALS, 2020, 10 (16)
  • [26] Roll-to-Roll Production of High-Performance All-Organic Polymer Nanocomposites for High-Temperature Capacitive Energy Storage
    Wang, Qitong
    Ding, Jiale
    Jiang, Wei
    Jiang, Zhenhua
    Jiang, Lei
    Zhou, Yahong
    Zhang, Yunhe
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (06)
  • [27] High-Temperature Capacitor Polymer Films
    Tan, Daniel
    Zhang, Lili
    Chen, Qin
    Irwin, Patricia
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (12) : 4569 - 4575
  • [28] High-Temperature Capacitor Polymer Films
    Daniel Tan
    Lili Zhang
    Qin Chen
    Patricia Irwin
    Journal of Electronic Materials, 2014, 43 : 4569 - 4575
  • [29] High-temperature energy storage with a new tri-layers polymer composites via hybrid assembly engineering
    Wen, Fei
    Yuan, Hongbin
    Jiang, Mengquan
    Yang, Pingan
    Wang, Jian
    Zhang, Lin
    Li, Lili
    Wang, Gaofeng
    Li, Wenjun
    Wu, Wei
    Shen, Zhonghui
    Zhang, Shujun
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [30] Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage
    Dai, Zhizhan
    Bao, Zhiwei
    Ding, Song
    Liu, Chuanchuan
    Sun, Haoyang
    Wang, He
    Zhou, Xiang
    Wang, Yuchen
    Yin, Yuewei
    Li, Xiaoguang
    ADVANCED MATERIALS, 2022, 34 (05)