Absolute Quantum Gravimeters and Gradiometers for Field Measurements

被引:1
|
作者
Antoni-Micollier, Laura [1 ]
Arnal, Maxime [1 ]
Gautier, Romain [1 ]
Janvier, Camille [1 ]
Menoret, Vincent [1 ,2 ]
Richard, Jeremie [1 ]
Vermeulen, Pierre [1 ]
Rosenbusch, Peter [1 ]
Majek, Cedric [1 ]
Desruelle, Bruno [3 ]
机构
[1] Exail Quantum Syst, Bordeaux, France
[2] Photon Digital & Nanosci Lab LP2N, Bordeaux, France
[3] Exail Quantum Syst, St Germain En Laye, France
关键词
Accelerometers; Vibrations; Sensitivity; Instruments; Atoms; Robustness; Gravity measurement;
D O I
10.1109/MIM.2024.10654720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gravity measurements provide valuable information on the mass distribution below the earth surface relevant to various areas of geosciences such as hydrology, geodesy, geophysics, volcanology, and natural resources management. During the past decades, the needs for sensitivity, robustness, compactness, and transportability of instruments measuring the gravitational acceleration have constantly increased. Today, applications typically call for 1 mu Gal = 10 nm s(2) similar to 10(-9) resolution on time scales ranging from minutes to years. Absolute Quantum Gravimeters (AQGs) based on matterwave interferometry with laser-cooled atoms address all these challenges at once, even in uncontrolled environments [1], [2]. Furthermore, to date, quantum gravimeters are the only technology capable of providing continuous absolute gravity data over long measurement durations (similar to 1 day to months or more). In this paper, we recall the AQG working principle and present the reproducible high performance at the mu Gal level on all 16 units fabricated so far. We also describe recent progress on the Differential Quantum Gravimeter (DQG) which measures simultaneously the mean gravitational acceleration and its vertical gradient at the level of 10 nm/s(2) and 1 E (1 Eeotvos] = 10(-9) s(-2)), respectively [3].
引用
收藏
页码:4 / 10
页数:7
相关论文
共 50 条
  • [21] Absolute signal of stimulated Raman scattering microscopy: A quantum electrodynamics treatment
    Min, Wei
    Gao, Xin
    SCIENCE ADVANCES, 2024, 10 (50):
  • [22] Quantum simulations based on measurements and feedback control
    Vollbrecht, K. G. H.
    Cirac, J. I.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [23] Quantum measurements in gravitational-wave detectors
    Khalili, F. Ya
    PHYSICS-USPEKHI, 2016, 59 (10) : 968 - 996
  • [24] Improvements in Absolute Seismometer Sensitivity Calibration Using Local Earth Gravity Measurements
    Anthony, Robert E.
    Ringler, Adam T.
    Wilson, Dave C.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2018, 108 (01) : 503 - 510
  • [25] Progress and Prospects in the Field of Quantum Computing
    Beterov, I. I.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2024, 60 (01) : 74 - 83
  • [26] Quantum time dilation in a gravitational field
    Paczos, Jerzy
    Debski, Kacper
    Grochowski, Piotr T.
    Smith, Alexander R. H.
    Dragan, Andrzej
    QUANTUM, 2024, 8
  • [27] The AQG-B Absolute Quantum Gravimeter: A Promising Sensor for Volcano Monitoring
    Diament, Michel
    Lion, Guillaume
    Pajot-Metivier, Gwendoline
    Merlet, Sebastien
    Deroussi, Sebastien
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2024, 27 (06) : 17 - 23
  • [28] Optically pumped quantum Mx-MR magnetometer with high oscillating magnetic field
    Ding Zhi-Chao
    Yuan Jie
    Wang Zhi-Guo
    Yang Kai-Yong
    Luo Hui
    CHINESE PHYSICS B, 2015, 24 (08)
  • [29] Neural networks for quantum state tomography with constrained measurements
    Ma, Hailan
    Dong, Daoyi
    Petersen, Ian R.
    Huang, Chang-Jiang
    Xiang, Guo-Yong
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [30] Measurements Conspire Nonlocally to Restructure Critical Quantum States
    Garratt, Samuel J.
    Weinstein, Zack
    Altman, Ehud
    PHYSICAL REVIEW X, 2023, 13 (02)