Energy Level Tuning in CsPbBr3 Perovskite Solar Cells through In Situ-Polymerized PEDOT Hole Transport Layer

被引:1
|
作者
Tong, Anling [1 ]
Chen, Xuanheng [1 ]
Wang, Yang [1 ]
Wang, Yuhong [1 ]
Zheng, Qingshui [1 ]
He, Ruowei [1 ]
Jin, Zhihang [1 ]
Sun, Weihai [1 ]
Li, Yunlong [2 ]
Wu, Jihuai [1 ]
机构
[1] Huaqiao Univ, Inst Mat Phys Chem, Coll Mat Sci & Engn, Engn Res Ctr Environm Friendly Funct Mat,Minist Ed, Xiamen 361021, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
all-inorganic CsPbBr3 perovskite solarcell; DBEDOT; in situ polymerization; PEDOT; energy level difference; EFFICIENT; NANOCRYSTALS;
D O I
10.1021/acsami.4c08526
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The all-inorganic CsPbBr3 perovskite solar cells exhibit excellent stability against humidity and thermal conditions as well as relatively low production cost, rendering them a gradually emerging research hot spot in the field of photovoltaics. However, the absence of a hole transport layer (HTL) in its common structure and the substantial energy level difference of up to 0.6 eV between the highest occupied molecular orbital (HOMO) level of CsPbBr3 and the work function of the carbon electrode have emerged as the primary factor limiting the improvement of its power conversion efficiency (PCE). In this work, the monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) is spin-coated onto the surface of the CsPbBr3 film directly and then subjected to annealing; DBEDOT undergoes in situ polymerization to form poly(3,4-ethylenedioxythiophene) (PEDOT), which aims to ameliorate the issue of excessive energy level difference between CsPbBr3 and the carbon electrode, and to facilitate the extraction and transport efficiency of holes between the CsPbBr3 perovskite and the carbon electrode. Compared to the pristine device, the PCE of the device based on in situ polymerization is enhanced and achieves a maximum efficiency of 9.81%. Furthermore, the unencapsulated devices based on in situ polymerization maintain 95.9% of their original efficiency after 40 days of stability testing.
引用
收藏
页码:50640 / 50649
页数:10
相关论文
共 50 条
  • [1] Enhancement of CsPbBr3 Hole-Free Perovskite Solar Cells through Natural Dye Modifications
    Liu, Yili
    Zhou, Cheng
    Cui, Can
    Liu, Xing
    Pang, Beili
    Feng, Jianguang
    Dong, Hongzhou
    Yu, Liyan
    Dong, Lifeng
    SOLAR RRL, 2023, 7 (24)
  • [2] Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer
    Yahiro, Masayuki
    Sugawara, Shun
    Maeda, Shinichi
    Shimoi, Yuko
    Wang, Pangpang
    Kobayashi, Shin-ichiro
    Takekuma, Kotaro
    Tumen-Ulzii, Ganbaatar
    Qin, Chuanjiang
    Matsushima, Toshinori
    Isaji, Tadayuki
    Kasai, Yoshinori
    Fujihara, Takashi
    Adachi, Chihaya
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12): : 14590 - 14598
  • [3] In situ Polymerization of PEDOT: π-Conjugated Polyelectrolyte and Application as Hole Transport Layer in Polymer Solar Cells
    Xiao, Yu-juan
    He, Qian-nan
    Zhou, Huan-yu
    Xu, Hai-tao
    Tan, Li-cheng
    Chen, Yi-wang
    ACTA POLYMERICA SINICA, 2018, (02): : 257 - 265
  • [4] ZnPc/CsPbBr3 QDs collaborative interface modification to improve the performance of CsPbBr3 perovskite solar cells
    Zou, Li
    Li, Xiaoyan
    Yang, Meili
    Yan, Jiahao
    Wang, Jiaming
    Cheng, Jiajie
    Xing, Jie
    Liu, Hao
    Hao, Huiying
    Dong, Jingjing
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 251
  • [5] Tailoring the PEDOT:PSS hole transport layer by electrodeposition method to improve perovskite solar cells
    Erazo E.A.
    Ortiz P.
    Cortés M.T.
    Electrochimica Acta, 2023, 439
  • [6] Improved performance and reproducibility of perovskite solar cells by jointly tuning the hole transport layer and the perovskite layer deposition
    Sharma, Ashish
    Rath, Arup K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (15) : 12652 - 12661
  • [7] Organic hole-transporting materials for 9.32%-efficiency and stable CsPbBr3 perovskite solar cells
    Zhao, Yuanyuan
    Liu, Tianshu
    Ren, Fumeng
    Duan, Jialong
    Wang, Yudi
    Yang, Xiya
    Li, Qinghua
    Tang, Qunwei
    MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (12) : 2239 - 2244
  • [8] Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells
    Bu, Fan
    He, Benlin
    Ding, Yang
    Li, Xueke
    Sun, Xuemiao
    Duan, Jialong
    Zhao, Yuanyuan
    Chen, Haiyan
    Tang, Qunwei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 205
  • [9] Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells
    Cheng, Jiajie
    Fan, Zhenjun
    Dong, Jingjing
    NANOMATERIALS, 2023, 13 (06)
  • [10] Preparation of CsPbBr3 Perovskite Solar Cells Using a Green Solvent
    Cheng, Jiajie
    Yan, Jiahao
    Wang, Jiaming
    Jiang, Yufan
    Xing, Jie
    Liu, Hao
    Hao, Huiying
    Dong, Jingjing
    ENERGIES, 2023, 16 (18)