Study on Diffusion Characteristics of Liquid Water in Gas Diffusion Lattice Boltzmann Method

被引:0
|
作者
Ji, Shengzheng [1 ]
Song, Zhuang [2 ]
He, Ying [2 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116026, Peoples R China
关键词
Lattice Boltzmann method; Gas diffusion layer; Random reconstruction; Transmission characteristics; MEMBRANE FUEL-CELLS; MICROSTRUCTURE RECONSTRUCTION; TRANSPORT; LAYERS; IMPACT; PERFORMANCE; COMPRESSION; PARAMETERS; PERMEABILITY;
D O I
10.4028/p-3yl8Ms
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The gas diffusion layer (GDL) is a crucial component of Proton Exchange Membrane Fuel Cells (PEMFC), water flooding will occur during the operation of PEMFC, resulting in performance degradation, and its water management plays a significant role in PEMFC performance. To investigate the transport mechanism of liquid water in GDL, the lattice Boltzmann method to simulate the behavior of GDL droplets using the 'random reconstruction' method. The accuracy of this model by calculating the tortuosity and comparing it with reported results in literature. The effects of different GDL structural parameters on permeability were studied. Finally, the conductivity and thermal conductivity of the GDL in various directions were examined. The results indicate that the porosity error of the three-dimensional structure model of GDL is within 0.01, enabling a realistic simulation of the GDL structure. The average error between the calculated results and the Bruggeman equation is only 2.5362%, and the average error compared to the reference results is less than 6%, demonstrating the model's high accuracy. As the porosity and fiber diameter of the GDL threedimensional structure model increase, the permeability also increases. Conversely, the permeability decreases with an increase in the thickness of the GDL three-dimensional structure model. Moreover, an increase in GDL porosity leads to a gradual decrease in electrical conductivity and thermal conductivity in both the thickness and plane directions, with a more pronounced effect on the thickness. This study uncovers the transport characteristics of liquid water in the gas diffusion layer, which can inform the optimization of GDL structure design and serve as a theoretical reference for enhancing water management in proton exchange membrane fuel cells. Future research directions will focus on further optimizing the three-dimensional structure of GDL to improve its transmission characteristics and overall performance.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Lattice Boltzmann method modeling and experimental study on liquid water characteristics in the gas diffusion layer of proton exchange membrane fuel cells
    Yang, Mingyang
    Jiang, Yongyi
    Liu, Jinling
    Xu, Sichuan
    Du, Aimin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10366 - 10380
  • [2] Lattice Boltzmann simulation of liquid water transport properties in gas diffusion layers using an orthogonal design method
    Zhang, Heng
    Chang, Hong
    Duan, Kangjun
    Sarker, Mrittunjoy
    Kui, Dianlu
    Zhan, Zhigang
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025,
  • [3] Simulation of liquid water removal in the gas diffusion layer with polytetrafluoroethylene random shedding using lattice Boltzmann method
    Liao, Jiadong
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Jiang, Ziheng
    Wang, Hao
    Zhang, Guoling
    Li, Zheng
    Sun, Juncai
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [4] Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method
    Yan, Song
    Yang, Mingyang
    Sun, Chuanyu
    Xu, Sichuan
    ENERGIES, 2023, 16 (16)
  • [5] Study on Gas Transport Performance in Perforated Gas Diffusion Layer by Lattice Boltzmann Method
    Jiang, Ziheng
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Liao, Jiadong
    Wang, Hao
    Sheng, Zhonghua
    Ying, Ruomeng
    Li, Zheng
    Zhang, Guoling
    Zhang, Hongpeng
    TRANSPORT IN POROUS MEDIA, 2022, 141 (02) : 417 - 438
  • [6] Lattice Boltzmann study of liquid water flow and freezing in the gas diffusion layer
    Zang, Linfeng
    Zhu, Xiaojing
    Hao, Liang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 71 : 32 - 41
  • [7] Simulation of the purging process of liquid water in a gas diffusion layer with a wetting gradient using the lattice Boltzmann method
    Liao, Jiadong
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Jiang, Ziheng
    Wang, Hao
    Zhang, Guoling
    Li, Zheng
    Sun, Bing
    TRANSPORT IN POROUS MEDIA, 2023, 148 (02) : 335 - 353
  • [8] Numerical study on permeability of gas diffusion layer with porosity gradient using lattice Boltzmann method
    Wang, Hao
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Liao, Jiadong
    Jiang, Ziheng
    Espinoza-Andaluz, Mayken
    Su, Fengmin
    Pan, Xinxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (42) : 22107 - 22121
  • [9] Effect of compression of microporous and gas diffusion layers on liquid water transport of PEMFC with interdigitated flow field by Lattice Boltzmann method
    Moslemi, Mehdi
    Javaherdeh, Kourosh
    Ashorynejad, Hamid Reza
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 642
  • [10] Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method
    Jiang, Ziheng
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Liao, Jiadong
    Wang, Hao
    Espinoza-Andaluz, Mayken
    Ying, Ruomeng
    Pan, Xinxiang
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 190