Super-localised wave function approximation of Bose-Einstein condensates

被引:1
作者
Peterseim, Daniel [1 ,2 ]
Waernegard, Johan [3 ]
Zimmer, Christoph [1 ]
机构
[1] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[2] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Gross-Pitaevskii equation; Cubic nonlinear Schr & ouml; dinger equation; Nonlinear eigenvalue problems; Low regularity potentials; Super-localised orthogonal decomposition; Numerical homogenisation; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; MATLAB TOOLBOX; DYNAMICS; EFFICIENT; STATES; CONVERGENCE; COMPUTATION; GPELAB;
D O I
10.1016/j.jcp.2024.113097
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel spatial discretisation method for reliable and efficient simulation of Bose-Einstein condensates modelled by the Gross-Pitaevskii equation and the corresponding nonlinear eigenvector problem. The method combines the high-accuracy properties of numerical homogenisation methods with a novel super-localisation approach for the calculation of the basis functions. A rigorous numerical analysis of the nonlinear eigenvector problem demonstrates superconvergence of the ideal approach compared to classical polynomial and multiscale finite element methods, even in low regularity regimes. Numerical tests show that the super-localised method is competitive with spectral methods, particularly in capturing critical physical effects in extreme conditions, such as vortex lattice formation in fast-rotating potential traps. The method's potential is further highlighted through a dynamic simulation of a phase transition from Mott insulator to Bose-Einstein condensate, emphasising its capability for reliable exploration of physical phenomena.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A finite element toolbox for the Bogoliubov-de Gennes stability analysis of Bose-Einstein condensates
    Sadaka, Georges
    Kalt, Victor
    Danaila, Ionut
    Hecht, Frederic
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 294
  • [42] Matter-wave interference in Bose-Einstein condensates: A dispersive hydrodynamic perspective
    Hoefer, M. A.
    Engels, P.
    Chang, J. J.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1311 - 1320
  • [43] Ground states of Bose-Einstein condensates with higher order interaction
    Bao, Weizhu
    Cai, Yongyong
    Ruan, Xinran
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 386 : 38 - 48
  • [44] Vortices in multilayer stacks of Bose-Einstein condensates with tilted dipoles
    Zhao, Qiang
    CANADIAN JOURNAL OF PHYSICS, 2024, 102 (03) : 168 - 174
  • [45] Interference of two Bose-Einstein condensates with varying initial conditions
    Hua, Wei
    Lyu, Yan
    Liu, Xue Shen
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (01) : 128 - 136
  • [46] Matter-wave solutions in Bose-Einstein condensates with harmonic and Gaussian potentials
    Yan, Zhenya
    Jiang, Dongmei
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [48] OCTBEC-A Matlab toolbox for optimal quantum control of Bose-Einstein condensates
    Hohenester, Ulrich
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) : 194 - 216
  • [49] Finite-temperature dynamics of vortices in Bose-Einstein condensates
    Gautam, S.
    Roy, Arko
    Mukerjee, Subroto
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [50] NUMERICAL SIMULATION OF QUANTUM STATE REDUCTION IN BOSE-EINSTEIN CONDENSATES WITH ATTRACTIVE INTERACTIONS
    Palpacelli, Silvia
    Succi, Sauro
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (05): : 629 - 646