Super-localised wave function approximation of Bose-Einstein condensates

被引:1
作者
Peterseim, Daniel [1 ,2 ]
Waernegard, Johan [3 ]
Zimmer, Christoph [1 ]
机构
[1] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[2] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Gross-Pitaevskii equation; Cubic nonlinear Schr & ouml; dinger equation; Nonlinear eigenvalue problems; Low regularity potentials; Super-localised orthogonal decomposition; Numerical homogenisation; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; MATLAB TOOLBOX; DYNAMICS; EFFICIENT; STATES; CONVERGENCE; COMPUTATION; GPELAB;
D O I
10.1016/j.jcp.2024.113097
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel spatial discretisation method for reliable and efficient simulation of Bose-Einstein condensates modelled by the Gross-Pitaevskii equation and the corresponding nonlinear eigenvector problem. The method combines the high-accuracy properties of numerical homogenisation methods with a novel super-localisation approach for the calculation of the basis functions. A rigorous numerical analysis of the nonlinear eigenvector problem demonstrates superconvergence of the ideal approach compared to classical polynomial and multiscale finite element methods, even in low regularity regimes. Numerical tests show that the super-localised method is competitive with spectral methods, particularly in capturing critical physical effects in extreme conditions, such as vortex lattice formation in fast-rotating potential traps. The method's potential is further highlighted through a dynamic simulation of a phase transition from Mott insulator to Bose-Einstein condensate, emphasising its capability for reliable exploration of physical phenomena.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
    Wu, Xinming
    Wen, Zaiwen
    Bao, Weizhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 303 - 329
  • [32] Metastability versus collapse following a quench in attractive Bose-Einstein condensates
    Golde, Jake
    Ruhl, Joanna
    Olshanii, Maxim
    Dunjko, Vanja
    Datta, Sumita
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [33] Anisotropic collapse in three-dimensional dipolar Bose-Einstein condensates
    Ilan, Boaz
    Taylor, Jessica
    PHYSICS LETTERS A, 2020, 384 (09)
  • [34] Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates
    Zeng, Rong
    Zhang, Yanzhi
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 854 - 860
  • [35] Vortices in atomic Bose-Einstein condensates: An introduction
    Ghosh, S
    PHASE TRANSITIONS, 2004, 77 (5-7) : 625 - 676
  • [36] Continuous-wave solutions in spinor Bose-Einstein condensates
    Tasgal, Richard S.
    Band, Y. B.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [37] Polaronic mass renormalization of impurities in Bose-Einstein condensates: Correlated Gaussian-wave-function approach
    Shchadilova, Yulia E.
    Grusdt, Fabian
    Rubtsov, Alexey N.
    Demler, Eugene
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [38] Stability of magnetically trapped Bose-Einstein condensates
    Kawaguchi, Y
    Ohmi, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (05) : 1118 - 1122
  • [39] HIGH ORDER EXPONENTIAL INTEGRATORS FOR NONLINEAR SCHRODINGER EQUATIONS WITH APPLICATION TO ROTATING BOSE-EINSTEIN CONDENSATES
    Besse, C.
    Dujardin, G.
    Lacroix-Violet, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1387 - 1411
  • [40] Motion of vortices in inhomogeneous Bose-Einstein condensates
    Groszek, Andrew J.
    Paganin, David M.
    Helmerson, Kristian
    Simula, Tapio P.
    PHYSICAL REVIEW A, 2018, 97 (02)