Super-localised wave function approximation of Bose-Einstein condensates

被引:1
|
作者
Peterseim, Daniel [1 ,2 ]
Waernegard, Johan [3 ]
Zimmer, Christoph [1 ]
机构
[1] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[2] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Gross-Pitaevskii equation; Cubic nonlinear Schr & ouml; dinger equation; Nonlinear eigenvalue problems; Low regularity potentials; Super-localised orthogonal decomposition; Numerical homogenisation; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; MATLAB TOOLBOX; DYNAMICS; EFFICIENT; STATES; CONVERGENCE; COMPUTATION; GPELAB;
D O I
10.1016/j.jcp.2024.113097
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel spatial discretisation method for reliable and efficient simulation of Bose-Einstein condensates modelled by the Gross-Pitaevskii equation and the corresponding nonlinear eigenvector problem. The method combines the high-accuracy properties of numerical homogenisation methods with a novel super-localisation approach for the calculation of the basis functions. A rigorous numerical analysis of the nonlinear eigenvector problem demonstrates superconvergence of the ideal approach compared to classical polynomial and multiscale finite element methods, even in low regularity regimes. Numerical tests show that the super-localised method is competitive with spectral methods, particularly in capturing critical physical effects in extreme conditions, such as vortex lattice formation in fast-rotating potential traps. The method's potential is further highlighted through a dynamic simulation of a phase transition from Mott insulator to Bose-Einstein condensate, emphasising its capability for reliable exploration of physical phenomena.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On Bose-Einstein condensates in the Thomas-Fermi regime
    Dimonte, Daniele
    Giacomelli, Emanuela L.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (04)
  • [22] Magnetic solitons in binary mixtures of Bose-Einstein condensates
    Pitaevskii, Lev P.
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2019, 30 (02) : 269 - 276
  • [23] Solitons in Bose-Einstein condensates
    Balakrishnan, Radha
    Satija, Indubala I.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 929 - 947
  • [24] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [25] Bose-Einstein condensate wave function and nonlinear Schrodinger equation
    Bobrov, V. B.
    Trigger, S. A.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2016, 43 (09) : 266 - 269
  • [26] Nonautonomous solitons in nonlinear optics and Bose-Einstein condensates
    Serkin, V. N.
    Hasegawa, Akira
    Belyaeva, T. L.
    15TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2008, 7027
  • [27] Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates
    Kengne, Emmanuel
    Liu, Wu-Ming
    Malomed, Boris A.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 899 : 1 - 62
  • [28] Wave functions, relative phase and interference for atomic Bose-Einstein condensates
    Cohen-Tannoudji, C
    Robilliard, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (03): : 445 - 477
  • [29] Computing multiple peak solutions for Bose-Einstein condensates in optical lattices
    Chang, S. -L.
    Chien, C. -S.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 926 - 947
  • [30] A Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
    Wu, Xinming
    Wen, Zaiwen
    Bao, Weizhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 303 - 329