Super-localised wave function approximation of Bose-Einstein condensates

被引:1
|
作者
Peterseim, Daniel [1 ,2 ]
Waernegard, Johan [3 ]
Zimmer, Christoph [1 ]
机构
[1] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[2] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Gross-Pitaevskii equation; Cubic nonlinear Schr & ouml; dinger equation; Nonlinear eigenvalue problems; Low regularity potentials; Super-localised orthogonal decomposition; Numerical homogenisation; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; MATLAB TOOLBOX; DYNAMICS; EFFICIENT; STATES; CONVERGENCE; COMPUTATION; GPELAB;
D O I
10.1016/j.jcp.2024.113097
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel spatial discretisation method for reliable and efficient simulation of Bose-Einstein condensates modelled by the Gross-Pitaevskii equation and the corresponding nonlinear eigenvector problem. The method combines the high-accuracy properties of numerical homogenisation methods with a novel super-localisation approach for the calculation of the basis functions. A rigorous numerical analysis of the nonlinear eigenvector problem demonstrates superconvergence of the ideal approach compared to classical polynomial and multiscale finite element methods, even in low regularity regimes. Numerical tests show that the super-localised method is competitive with spectral methods, particularly in capturing critical physical effects in extreme conditions, such as vortex lattice formation in fast-rotating potential traps. The method's potential is further highlighted through a dynamic simulation of a phase transition from Mott insulator to Bose-Einstein condensate, emphasising its capability for reliable exploration of physical phenomena.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Wave propagations in the F=1 spinor Bose-Einstein condensates
    Wadati, M
    Tsuchida, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (01)
  • [2] Time-varying Bose-Einstein condensates
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [3] A good approximation of modulated amplitude waves in Bose-Einstein condensates
    Jia, Leilei
    Liu, Qihuai
    Ma, Zhongjun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2715 - 2723
  • [4] Bose-Einstein condensates as gravitational wave detectors
    Robbins, Matthew P. G.
    Afshordi, Niayesh
    Mann, Robert B.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (07):
  • [5] Controlling Matter-Wave Smooth Positons in Bose-Einstein Condensates
    Manikandan, Kannan
    Serikbayev, Nurzhan
    Vijayasree, Shunmuganathan P.
    Aravinthan, Devarasu
    SYMMETRY-BASEL, 2023, 15 (08):
  • [6] Resonant wave formation in Bose-Einstein condensates
    Nicolin, Alexandru I.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [7] Dynamics of Vortex Dipoles in Anisotropic Bose-Einstein Condensates
    Goodman, Roy H.
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 699 - 729
  • [8] On the observation of nonclassical excitations in Bose-Einstein condensates
    Finke, Andreas
    Jain, Piyush
    Weinfurtner, Silke
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [9] Nonlinear Schrodinger Equations for Bose-Einstein Condensates
    Galati, Luigi
    Zheng, Shijun
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2013, 1562 : 50 - 64
  • [10] Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity
    Antoine, Xavier
    Duboscq, Romain
    NONLINEAR OPTICAL AND ATOMIC SYSTEMS: AT THE INTERFACE OF PHYSICS AND MATHEMATICS, 2015, 2146 : 49 - 145