Controllability of impulsive fractional damped integrodifferential systems with distributed delays

被引:1
作者
Arthi, G. [1 ]
Sivasangari, R. [1 ]
机构
[1] PSGR Krishnammal Coll Women, Dept Math, Peelamedu, Coimbatore 641004, Tamilnadu, India
关键词
DYNAMICAL-SYSTEMS; STABILITY; EXISTENCE;
D O I
10.1140/epjs/s11734-024-01324-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper focuses on controllability results for impulsive fractional distributed delay systems with damping behavior, involving the Caputo fractional derivative (CFD) for both linear and integro-differential systems. For linear systems, controllability results are established through the controllability Grammian matrix and employing a control function. Sufficient conditions for the controllability of nonlinear systems are derived using the Schauder fixed point theorem. An example is provided to illustrate the theory.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Controllability of a damped nonlinear fractional order integrodifferential system with input delay [J].
Ahmad, Irshad ;
Rahman, Ghaus Ur ;
Ahmad, Saeed ;
Alshehri, Nawal A. ;
Elagan, S. K. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (03) :1956-1966
[2]   Controllability of Impulsive Neutral Fractional Stochastic Systems [J].
Ain, Qura Tul ;
Nadeem, Muhammad ;
Akgul, Ali ;
De la Sen, Manuel .
SYMMETRY-BASEL, 2022, 14 (12)
[3]   Controllability of fractional damped dynamical systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rivero, M. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :66-73
[4]   Impulsive semilinear heat equation with delay in control and in state [J].
Camacho, Oscar ;
Leiva, Hugo .
ASIAN JOURNAL OF CONTROL, 2020, 22 (03) :1075-1089
[5]   Controllability of Semilinear Differential Systems with Nonlocal Initial Conditions in Banach Spaces [J].
Chang, Y. K. ;
Nieto, J. J. ;
Li, W. S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) :267-273
[6]  
Dugundij J., 1982, Fixed point theory
[7]  
He BB., 2020, Electron. Eng, V21, P844
[8]   On second order differential equations with state-dependent delay [J].
Hernandez, Eduardo ;
Azevedo, Katia A. G. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2018, 97 (15) :2610-2617
[9]  
Kilbas A., 2006, Theory and Applications of Fractional Differential Equations, V24, DOI DOI 10.1016/S0304-0208(06)80001-0
[10]  
Klamka J, 2019, STUD SYST DECIS CONT, V162, P27, DOI 10.1007/978-3-319-92540-0_3