Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation

被引:2
|
作者
Kenmotsu, Soma [1 ]
Hirasawa, Makoto [2 ]
Tamadate, Tomoya [1 ]
Matsumoto, Chigusa [1 ]
Osone, Saho [1 ]
Inomata, Yayoi [1 ]
Seto, Takafumi [1 ]
机构
[1] Kanazawa Univ, Sch Frontier Engn, Kanazawa 9201192, Japan
[2] Natl Inst Adv Sci & Technol AIST, Tsukuba 3058560, Japan
来源
ACS OMEGA | 2024年 / 9卷 / 36期
关键词
SINGLE-MOLECULE DETECTION; AG NANOPARTICLES; SERS; FILMS; SPECTROSCOPY; DEPOSITION; FABRICATION; PARTICLES;
D O I
10.1021/acsomega.4c03046
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study delved into the complex interplay between the nanostructural characteristics of nanoparticles and their efficacy in surface-enhanced Raman scattering (SERS) for sensitive detection of trace chemical substances. Silver nanoparticles were prepared for the SERS substrate by combining laser ablation, postannealing processes (up to 500 degrees C), and electrostatic mobility classification, allowing high-purity silver nanoparticles with controlling their sizes (40-100 nm) and aggregate structures. These nanoparticles were then inertially deposited on the substrates to create SERS-active surfaces, employing Rhodamine B as a probe to assess the impact of particle size, shape, and deposition density on SERS effectiveness. Our findings revealed that spherical nanoparticles, especially those approximately 50 nm in diameter, controlled to a spherical structure through gas-phase annealing at 500 degrees C and subsequent classification, yielded the most significant SERS enhancement. This optimal can be explained by the particle size response of the surface plasmon resonance, where the enhancement of the Raman signal for particles up to 50 nm (1/10 of the laser wavelength used in this study, 532 nm) arises from a balance between the enhancement of dipole moment and the number of "hot spot" regions (respectively proportional to the cube and inverse square of the diameters in theory, leading to a linear relationship between signal intensity and particle diameter); meanwhile, in larger size region than 50 nm, the Raman signal was decreased owing to the attribution of the phase difference between the electric field and dipole moment. Furthermore, we found that a deposition density of 2 mu g resulted in nearly a single layer of particles, which is crucial for maximizing SERS hotspots and, consequently, the enhancement effect.
引用
收藏
页码:37716 / 37723
页数:8
相关论文
共 50 条
  • [1] Surface-Enhanced Raman Scattering Using Silver Nanoparticles Produced by Laser Ablation in Liquid
    Nebogatikov, M. S.
    Shur, V. Ya.
    Tyurnina, A. E.
    Kozin, R. V.
    Sukhanova, V. Yu.
    Mingaliev, E. A.
    Zorikhin, D. V.
    FERROELECTRICS, 2015, 477 (01) : 54 - 62
  • [2] Surface-enhanced Raman scattering investigations on silver nanoparticles deposited on alumina and titania nanotubes: influence of the substrate material on surface-enhanced Raman scattering activity of Ag nanoparticles
    Kudelski, Andrzej
    Pisarek, Marcin
    Roguska, Agata
    Holdynski, Marcin
    Janik-Czachor, Maria
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (10) : 1360 - 1366
  • [3] Surface-Enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents
    Esmaeilzadeh, Marzieh
    Dizajghorbani-Aghdam, Hossein
    Malekfar, Rasoul
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 257
  • [4] Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering
    Yang, Min
    Zhang, Ling
    Chen, Bin
    Wang, Zheng
    Chen, Chao
    Zeng, Heping
    NANOTECHNOLOGY, 2017, 28 (05)
  • [5] Size-dependent surface-enhanced Raman scattering of Sodium Benzoate on silver nanoparticles
    Badr, Y
    Mahmoud, MA
    JOURNAL OF MOLECULAR STRUCTURE, 2005, 749 (1-3) : 187 - 192
  • [6] Surface-enhanced Raman scattering effect of silver nanoparticles array
    Cheng Zi-Qiang
    Shi Hai-Quan
    Yu Ping
    Liu Zhi-Min
    ACTA PHYSICA SINICA, 2018, 67 (19)
  • [7] Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation
    Fazio, E.
    Trusso, S.
    Ponterio, R. C.
    APPLIED SURFACE SCIENCE, 2013, 272 : 36 - 41
  • [8] Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Stamplecoskie, Kevin G.
    Scaiano, Juan C.
    Tiwari, Vidhu S.
    Anis, Hanan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05) : 1403 - 1409
  • [9] Synthesis of Silver Nanoparticles with Controllable Surface Charge and Their Application to Surface-Enhanced Raman Scattering
    Alvarez-Puebla, Ramon A.
    Aroca, Ricardo F.
    ANALYTICAL CHEMISTRY, 2009, 81 (06) : 2280 - 2285
  • [10] Improved Laser-induced Deposition of Silver Nanoparticles on Fiber End for Surface-enhanced Raman Scattering
    Yin, Zhen
    Li, Xuejin
    Geng, Youfu
    Tan, Xiaoling
    Hong, Xueming
    2016 15TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2016,