Scanning Probe Microscopy of Halide Perovskite Solar Cells

被引:0
|
作者
Lee, Minwoo [1 ]
Wang, Lei [2 ]
Zhang, Dawei [2 ,3 ]
Li, Jiangyu [4 ]
Kim, Jincheol [2 ,5 ]
Yun, Jae Sung [1 ,6 ]
Seidel, Jan [2 ,3 ]
机构
[1] Univ New South Wales, Australian Ctr Adv Photovolta ACAP, Sch Photovolta & Renewable Energy, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[3] UNSW Sydney, ARC Ctr Excellence Future Low Energy Elect Technol, Sydney, NSW 2052, Australia
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Macquarie Univ, Sch Engn, Sydney, NSW 2109, Australia
[6] Univ Surrey, Adv Technol Inst ATI, Sch Comp Sci & Elect Engn, Guildford GU2 7XH, Surrey, England
基金
新加坡国家研究基金会;
关键词
halide perovskites; photovoltaics; scanning probe microscopy; solar cells; METHYLAMMONIUM LEAD IODIDE; GRAIN-BOUNDARIES; PHASE-TRANSITIONS; HIGH-PERFORMANCE; ION MIGRATION; THIN-FILMS; TRANSPORT; FERROELECTRICITY; CH(3)NH(3)PBL(3); ACCUMULATION;
D O I
10.1002/adma.202407291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scanning probe microscopy (SPM) has enabled significant new insights into the nanoscale and microscale properties of solar cell materials and underlying working principles of photovoltaic and optoelectronic technology. Various SPM modes, including atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, piezoresponse force microscopy, and scanning near-field optical microscopy, can be used for the investigation of electrical, optical and chemical properties of associated functional materials. A large body of work has improved the understanding of solar cell device processing and synthesis in close synergy with SPM investigations in recent years. This review provides an overview of SPM measurement capabilities and attainable insight with a focus on recently widely investigated halide perovskite materials.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Additive engineering for stable halide perovskite solar cells
    Pereyra C.
    Xie H.
    Lira-Cantu M.
    Journal of Energy Chemistry, 2021, 60 : 599 - 634
  • [42] Organometal halide perovskite solar cells: degradation and stability
    Berhe, Taame Abraha
    Su, Wei-Nien
    Chen, Ching-Hsiang
    Pan, Chun-Jern
    Cheng, Ju-Hsiang
    Chen, Hung-Ming
    Tsai, Meng-Che
    Chen, Liang-Yih
    Dubale, Amare Aregahegn
    Hwang, Bing-Joe
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) : 323 - 356
  • [43] Interface Design for Metal Halide Perovskite Solar Cells
    Schulz, Philip
    ACS ENERGY LETTERS, 2018, 3 (06): : 1287 - 1293
  • [44] Compositional engineering for lead halide perovskite solar cells
    Haoxin Wang
    Lixiu Zhang
    Ming Cheng
    Liming Ding
    Journal of Semiconductors, 2022, 43 (08) : 10 - 12
  • [45] Lead-Less Halide Perovskite Solar Cells
    Gollino, Liam
    Pauporte, Thierry
    SOLAR RRL, 2021, 5 (03)
  • [46] Compositional engineering for lead halide perovskite solar cells
    Haoxin Wang
    Lixiu Zhang
    Ming Cheng
    Liming Ding
    Journal of Semiconductors, 2022, (08) : 10 - 12
  • [47] ZnO nanostructures for organometallic halide perovskite solar cells
    Tam, Ho Won
    Liu, Fangzhou
    Wang, Yushu
    Chen, Wei
    Leung, Tik Lun
    Djurisic, Aleksandra B.
    Ng, Alan Man Ching
    Chan, Wai Kin
    Tang, Jinyao
    OXIDE-BASED MATERIALS AND DEVICES IX, 2018, 10533
  • [48] Sustainable lead management in halide perovskite solar cells
    Park, So Yeon
    Park, Ji-Sang
    Kim, Byeong Jo
    Lee, Hyemin
    Walsh, Aron
    Zhu, Kai
    Kim, Dong Hoe
    Jung, Hyun Suk
    NATURE SUSTAINABILITY, 2020, 3 (12) : 1044 - 1051
  • [49] Ion Migration and Accumulation in Halide Perovskite Solar Cells†
    Zuo, Lijian
    Li, Zexin
    Chen, Hongzheng
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (07) : 861 - 876
  • [50] Morphological and compositional progress in halide perovskite solar cells
    Kim, Hui-Seon
    Hagfeldt, Anders
    Park, Nam-Gyu
    CHEMICAL COMMUNICATIONS, 2019, 55 (09) : 1192 - 1200