On the Berezin Number of Operators on the Reproducing Kernel of Hilbert Space and Related Problems

被引:0
作者
Yamanci, Ulas [1 ]
Karli, Ismail M. [1 ]
机构
[1] Suleyman Demirel Univ, Dept Stat, Isparta, Turkiye
关键词
INEQUALITIES; SYMBOL;
D O I
10.1007/s11253-024-02347-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain some new inequalities for the Berezin number of operators via the Cauchy-Schwarz-type inequalities. Some other related problems are also discussed.
引用
收藏
页码:680 / 690
页数:11
相关论文
共 39 条
  • [21] AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    Moradi, Hamid Reza
    [J]. MATHEMATICA SLOVACA, 2020, 70 (01) : 233 - 237
  • [22] New estimates for the numerical radius of Hilbert space operators
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 946 - 956
  • [23] On the p-numerical radii of Hilbert space operators
    Benmakhlouf, Ahlem
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15) : 2813 - 2829
  • [24] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [25] Upper bounds for the numerical radius of Hilbert space operators
    Mansoori, Akram
    Omidvar, Mohsen Erfanian
    Shebrawi, Khalid
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1473 - 1481
  • [26] ON THE ESTIMATION OF q -NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Atra, Arnab
    Roy, Alguni
    [J]. OPERATORS AND MATRICES, 2024, 18 (02): : 343 - 359
  • [27] Upper bounds for the numerical radii of powers of Hilbert space operators
    Al-Dolat, Mohammed
    Kittaneh, Fuad
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (02) : 341 - 352
  • [28] A-Numerical Radius of Semi-Hilbert Space Operators
    Guesba, Messaoud
    Bhunia, Pintu
    Paul, Kallol
    [J]. JOURNAL OF CONVEX ANALYSIS, 2024, 31 (01) : 227 - 242
  • [29] Refining the upper bound for the numerical radius of Hilbert space operators
    Heydarbeygi, Zahra
    Khorasani, Mohammad Ali Shiran
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [30] Operators Related to Truncated Hilbert Transforms on H1
    Liu, Hong Hai
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (07) : 1011 - 1020