Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations

被引:2
|
作者
dos Santos, Gonzalo [1 ,2 ]
Urbassek, Herbert M. [3 ]
Bringa, Eduardo M. [1 ,2 ,4 ]
机构
[1] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[2] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
[3] Univ Kaiserslautern Landau, Phys Dept, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[4] Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago 8580745, Chile
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nickel; Magnetization; Molecular dynamics; Spin dynamics; Nanoparticles; Curie temperature; MAGNETIC-PROPERTIES; BEHAVIOR; PARTICLES; MODELS; IRON;
D O I
10.1038/s41598-024-73129-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} decreases with the NP diameter D by at most 10% at D=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=2$$\end{document} nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}. Extrapolating the inverse of the magnetization as function of temperature near Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} gives a lower Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} than the maximum of the susceptibility.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Size-dependent hydrophobic to hydrophilic transition for nanoparticles: A molecular dynamics study
    Chiu, Chi-cheng
    Moore, Preston B.
    Shinoda, Wataru
    Nielsen, Steven O.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24):
  • [42] SIZE-DEPENDENT CURIE-TEMPERATURE IN NANOSCALE MNFE2O4 PARTICLES
    TANG, ZX
    SORENSEN, CM
    KLABUNDE, KJ
    HADJIPANAYIS, GC
    PHYSICAL REVIEW LETTERS, 1991, 67 (25) : 3602 - 3605
  • [43] Size-Dependent Lattice Dynamics of Atomically Precise Cadmium Selenide Quantum Dots
    Shi, Chenyang
    Beecher, Alexander N.
    Li, Yan
    Owen, Jonathan S.
    Leu, Bogdan M.
    Said, Ayman H.
    Hu, Michael Y.
    Billinge, Simon J. L.
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [44] TEMPERATURE DEPENDENCE OF SPIN-LATTICE RELAXATION TIMES OF FE++ AND NI++ IN MGO
    JONES, JB
    LEWIS, MF
    SOLID STATE COMMUNICATIONS, 1967, 5 (08) : 595 - &
  • [45] Size-dependent freezing temperature of metallic and semi-metallic nanoparticles
    Zhu, T. S.
    Li, M.
    MATERIALS RESEARCH BULLETIN, 2015, 63 : 253 - 255
  • [46] Size-Dependent Eutectic Temperature of Ag-Pb Alloy Nanoparticles
    Lu, Haiming
    Shuai, Jing
    Meng, Xiangkang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 1480 - 1483
  • [47] Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations
    Tian, Falin
    Yue, Tongtao
    Dong, Wei
    Yi, Xin
    Zhang, Xianren
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (05) : 3474 - 3483
  • [48] Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles
    Qu, Y. D.
    Liang, X. L.
    Kong, X. Q.
    Zhang, W. J.
    PHYSICS OF METALS AND METALLOGRAPHY, 2017, 118 (06): : 528 - 534
  • [49] Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles
    Y. D. Qu
    X. L. Liang
    X. Q. Kong
    W. J. Zhang
    Physics of Metals and Metallography, 2017, 118 : 528 - 534
  • [50] Dynamics of cellulose-water interfaces:: NMR spin-lattice relaxation times calculated from atomistic computer simulations
    Bergenstrahle, Malin
    Wohlert, Jakob
    Larsson, Per Tomas
    Mazeau, Karim
    Berglund, Lars A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (09): : 2590 - 2595