Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations

被引:2
|
作者
dos Santos, Gonzalo [1 ,2 ]
Urbassek, Herbert M. [3 ]
Bringa, Eduardo M. [1 ,2 ,4 ]
机构
[1] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[2] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
[3] Univ Kaiserslautern Landau, Phys Dept, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[4] Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago 8580745, Chile
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nickel; Magnetization; Molecular dynamics; Spin dynamics; Nanoparticles; Curie temperature; MAGNETIC-PROPERTIES; BEHAVIOR; PARTICLES; MODELS; IRON;
D O I
10.1038/s41598-024-73129-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} decreases with the NP diameter D by at most 10% at D=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=2$$\end{document} nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}. Extrapolating the inverse of the magnetization as function of temperature near Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} gives a lower Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} than the maximum of the susceptibility.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Size-dependent hardness of nanoscale metallic contacts from molecular dynamics simulations
    Kim, Hojin
    Strachan, Alejandro
    PHYSICAL REVIEW B, 2012, 86 (06)
  • [22] Size-Dependent Dynamics of Nanoparticles in Unentangled Polyelectrolyte Solutions
    Poling-Skutvik, Ryan
    Krishnamoorti, Ramanan
    Conrad, Jacinta C.
    ACS MACRO LETTERS, 2015, 4 (10): : 1169 - 1173
  • [23] Temperature and size-dependent Hamaker constants for metal nanoparticles
    Jiang, K.
    Pinchuk, P.
    NANOTECHNOLOGY, 2016, 27 (34)
  • [24] Critical Thickness and the Size-Dependent Curie Temperature of BaTiO3 Nanofilms
    Zhang, Yihui
    Sang, Yongliang
    Liu, Bin
    Fang, Daining
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (05) : 867 - 872
  • [25] Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations
    Wu, Xufei
    Liu, Zeyu
    Luo, Tengfei
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (08)
  • [26] Spin-lattice dynamics of surface vs core magnetization in Fe nanoparticles
    dos Santos, Gonzalo
    Meyer, Robert
    Aparicio, Romina
    Tranchida, Julien
    Bringa, Eduardo M.
    Urbassek, Herbert M.
    APPLIED PHYSICS LETTERS, 2021, 119 (01)
  • [27] Effect of surface tension from MD simulations on size-dependent deliquescence of NaCl nanoparticles
    Bahadur, Ranjit
    Russell, Lynn M.
    AEROSOL SCIENCE AND TECHNOLOGY, 2008, 42 (05) : 369 - 376
  • [28] NMR OBSERVATION OF TEMPERATURE-DEPENDENT SPIN-LATTICE RELAXATION IN TRANSPOLYACETYLENE
    MASIN, F
    GUSMAN, G
    PHYSICAL REVIEW B, 1987, 36 (04): : 2153 - 2157
  • [29] Size-dependent magnetic ordering and spin dynamics in DyPO4 and GdPO4 nanoparticles
    Evangelisti, Marco
    Sorop, Tibi G.
    Bakharev, Oleg N.
    Visser, Dirk
    Hillier, Adrian D.
    Alonso, Juan J.
    Haase, Markus
    Boatner, Lynn A.
    de Jongh, L. Jos
    PHYSICAL REVIEW B, 2011, 84 (09):
  • [30] Size-dependent melting temperature of nanoparticles based on cohesive energy
    Huo, Kai-Tuo
    Chen, Xiao-Ming
    MODERN PHYSICS LETTERS B, 2014, 28 (19):