Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations

被引:2
|
作者
dos Santos, Gonzalo [1 ,2 ]
Urbassek, Herbert M. [3 ]
Bringa, Eduardo M. [1 ,2 ,4 ]
机构
[1] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[2] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
[3] Univ Kaiserslautern Landau, Phys Dept, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[4] Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago 8580745, Chile
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nickel; Magnetization; Molecular dynamics; Spin dynamics; Nanoparticles; Curie temperature; MAGNETIC-PROPERTIES; BEHAVIOR; PARTICLES; MODELS; IRON;
D O I
10.1038/s41598-024-73129-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} decreases with the NP diameter D by at most 10% at D=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=2$$\end{document} nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document}. Extrapolating the inverse of the magnetization as function of temperature near Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} gives a lower Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_c$$\end{document} than the maximum of the susceptibility.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Beating the Size-Dependent Limit with Spin-Lattice Coupling in Nanomagnetism
    Li, Mengmeng
    Wang, Xiuyu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (02) : 1732 - 1739
  • [2] Size-dependent lattice dynamics of barium titanate nanoparticles
    Huang, Tung-Ching
    Wang, Mei-Tan
    Sheu, Hwo-Shuenn
    Hsieh, Wen-Feng
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (47)
  • [3] Size-dependent Curie transition of Ni nanocrystals
    Lu, H. M.
    Li, P. Y.
    Huang, Y. N.
    Meng, X. K.
    Zhang, X. Y.
    Liu, Q.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
  • [4] Size-dependent Curie transition of Ni nanocrystals
    Lu, H.M.
    Li, P.Y.
    Huang, Y.N.
    Meng, X.K.
    Zhang, X.Y.
    Liu, Q.
    Journal of Applied Physics, 2009, 105 (02):
  • [5] Parallel algorithm for spin and spin-lattice dynamics simulations
    Ma, Pui-Wai
    Woo, C. H.
    PHYSICAL REVIEW E, 2009, 79 (04)
  • [6] Spin-Lattice Dynamics simulations of ferromagnetic iron
    Ma, Pui-Wai
    Woo, C. H.
    Dudarev, S. L.
    ELECTRON MICROSCOPY AND MULTISCALE MODELING, PROCEEDINGS, 2008, 999 : 134 - +
  • [7] Size-dependent ordering and Curie temperatures of FePt nanoparticles
    Lu, H. M.
    Cao, Z. H.
    Zhao, C. L.
    Li, P. Y.
    Meng, X. K.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (12)
  • [8] Angular momentum conservation in spin-lattice dynamics simulations
    Cooke III, Joseph R.
    Lukes, Jennifer R.
    PHYSICAL REVIEW B, 2023, 107 (02)
  • [9] Size-Dependent Spin Structures in Iron Nanoparticles
    Rodriguez, A. Fraile
    Kleibert, A.
    Bansmann, J.
    Voitkans, A.
    Heyderman, L. J.
    Nolting, F.
    PHYSICAL REVIEW LETTERS, 2010, 104 (12)
  • [10] Temperature-dependent magnetism in Fe foams via spin-lattice dynamics
    Meyer, Robert
    Valencia, Felipe
    Dos Santos, Gonzalo
    Aparicio, Romina
    Bringa, Eduardo M.
    Urbassek, Herbert M.
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 211