LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease

被引:12
作者
Keeney, Matthew T. [1 ,2 ,3 ]
Rocha, Emily M. [1 ,2 ]
Hoffman, Eric K. [1 ,2 ]
Farmer, Kyle [1 ,2 ]
Di Maio, Roberto [1 ,2 ]
Weir, Julie [1 ,2 ]
Wagner, Weston G. [1 ,2 ]
Hu, Xiaoping [1 ,2 ]
Clark, Courtney L. [1 ,2 ]
Castro, Sandra L. [1 ,2 ]
Scheirer, Abigail [1 ,2 ]
Fazzari, Marco [3 ]
De Miranda, Briana R. [1 ,4 ]
Pintchovski, Sean A. [5 ]
Shrader, William D. [5 ]
Pagano, Patrick J. [3 ,6 ]
Hastings, Teresa G. [1 ,2 ]
Greenamyre, J. Timothy [1 ,2 ]
机构
[1] Univ Pittsburgh, Sch Med, Pittsburgh Inst Neurodegenerat Dis, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Dept Neurol, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Sch Med, Dept Pharmacol & Chem Biol, Pittsburgh, PA USA
[4] Univ Alabama Birmingham, Ctr Neurodegenerat & Expt Therapeut, Dept Neurol, Birmingham, AL USA
[5] Acurex Biosci, San Carlos, CA USA
[6] Univ Pittsburgh, Sch Med, Vasc Med Inst, Pittsburgh, PA USA
关键词
OXIDATIVE STRESS; KINASE-ACTIVITY; COMPLEX-I; PHOSPHORYLATION; INHIBITOR; MUTATIONS; P47PHOX; GENE;
D O I
10.1126/scitranslmed.adl3438
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47(phox) subunit of NOX2. This, in turn, led to translocation of p47(phox) from the cytosol to the membrane-associated gp91(phox) (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.
引用
收藏
页数:15
相关论文
共 50 条
[11]   Redox Proteomics Analyses of the Influence of Co-Expression of Wild-Type or Mutated LRRK2 and Tau on C. elegans Protein Expression and Oxidative Modification: Relevance to Parkinson Disease [J].
Di Domenico, Fabio ;
Sultana, Rukhsana ;
Ferree, Andrew ;
Smith, Katelyn ;
Barone, Eugenio ;
Perluigi, Marzia ;
Coccia, Raffaella ;
Pierce, William ;
Cai, Jian ;
Mancuso, Cesare ;
Squillace, Rachel ;
Wiengele, Manfred ;
Dalle-Donne, Isabella ;
Wolozin, Benjamin ;
Butterfield, D. Allan .
ANTIOXIDANTS & REDOX SIGNALING, 2012, 17 (11) :1490-1506
[12]   LRRK2 activation in idiopathic Parkinson's disease [J].
Di Maio, Roberto ;
Hoffman, Eric K. ;
Rocha, Emily M. ;
Keeney, Matthew T. ;
Sanders, Laurie H. ;
De Miranda, Briana R. ;
Zharikov, Alevtina ;
Van Laar, Amber ;
Stepan, Antonia F. ;
Lanz, Thomas A. ;
Kofler, Julia K. ;
Burton, Edward A. ;
Alessi, Dario R. ;
Hastings, Teresa G. ;
Greenamyre, J. Timothy .
SCIENCE TRANSLATIONAL MEDICINE, 2018, 10 (451)
[13]   α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease [J].
Di Maio, Roberto ;
Barrett, Paul J. ;
Hoffman, Eric K. ;
Barrett, Caitlyn W. ;
Zharikov, Alevtina ;
Borah, Anupom ;
Hu, Xiaoping ;
Mccoy, Jennifer ;
Chu, Charleen T. ;
Burton, Edward A. ;
Hastings, Teresa G. ;
Greenamyre, J. Timothy .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (342)
[14]   The Role of Oxidative Stress in Parkinson's Disease [J].
Dias, Vera ;
Junn, Eunsung ;
Mouradian, M. Maral .
JOURNAL OF PARKINSONS DISEASE, 2013, 3 (04) :461-491
[15]   Cross talk between mitochondria and NADPH oxidases [J].
Dikalov, Sergey .
FREE RADICAL BIOLOGY AND MEDICINE, 2011, 51 (07) :1289-1301
[16]   The V-ATPase-ATG16L1 axis recruits LRRK2 to facilitate the lysosomal stress response [J].
Eguchi, Tomoya ;
Sakurai, Maria ;
Wang, Yingxue ;
Saito, Chieko ;
Yoshii, Gen ;
Wileman, Thomas ;
Mizushima, Noboru ;
Kuwahara, Tomoki ;
Iwatsubo, Takeshi .
JOURNAL OF CELL BIOLOGY, 2024, 223 (03)
[17]   p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases [J].
El-Benna, Jamel ;
Dang, Pham My-Chan ;
Gougerot-Pocidalo, Marie-Anne ;
Marie, Jean-Claude ;
Braut-Boucher, Francoise .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2009, 41 (04) :217-225
[18]   Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease [J].
Fraser, Kyle B. ;
Rawlins, Ashlee B. ;
Clark, Rachel G. ;
Alcalay, Roy N. ;
Standaert, David G. ;
Liu, Nianjun ;
West, Andrew B. .
MOVEMENT DISORDERS, 2016, 31 (10) :1543-1550
[19]   Rotenone Directly Induces BV2 Cell Activation via the p38 MAPK Pathway [J].
Gao, Feng ;
Chen, Dong ;
Hu, Qingsong ;
Wang, Guanghui .
PLOS ONE, 2013, 8 (08)
[20]   LRRK2 Is Involved in the IFN-γ Response and Host Response to Pathogens [J].
Gardet, Agnes ;
Benita, Yair ;
Li, Chun ;
Sands, Bruce E. ;
Ballester, Isabel ;
Stevens, Christine ;
Korzenik, Joshua R. ;
Rioux, John D. ;
Daly, Mark J. ;
Xavier, Ramnik J. ;
Podolsky, Daniel K. .
JOURNAL OF IMMUNOLOGY, 2010, 185 (09) :5577-5585