Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage

被引:2
作者
Hussein, Mouraya [1 ,2 ]
Liu, Ye [1 ,2 ]
Vink, Monique [1 ,2 ]
Kroon, Pascal Z. [1 ,2 ]
Das, Atze T. [1 ,2 ]
Berkhout, Ben [1 ,2 ]
Herrera-Carrillo, Elena [1 ,2 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Med Microbiol & Infect Prevent, Meibergdreef 9, Amsterdam, Netherlands
[2] Amsterdam Inst Immunol & Infect Dis, Amsterdam, Netherlands
来源
MOLECULAR THERAPY NUCLEIC ACIDS | 2024年 / 35卷 / 03期
关键词
ANTIVIRAL STRATEGY; SARS-COV-2; RNA; CRISPR; SEQUENCES; THERAPEUTICS; REPLICATION; INHIBITION; EXPRESSION; ESCAPE; DESIGN;
D O I
10.1016/j.omtn.2024.102278
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
引用
收藏
页数:10
相关论文
共 81 条
[71]   Effects of RNA secondary structure on cellular antisense activity [J].
Vickers, TA ;
Wyatt, JR ;
Freier, SM .
NUCLEIC ACIDS RESEARCH, 2000, 28 (06) :1340-1347
[72]  
Vienna, Uo RNAfold web server
[73]   Human immunodeficiency virus type I escape is restricted when conserved genome sequences are targeted by RNA interference [J].
von Eije, Karin Jasmijn ;
ter Brake, Olivier ;
Berkhout, Ben .
JOURNAL OF VIROLOGY, 2008, 82 (06) :2895-2903
[74]   Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning [J].
Wessels, Hans-Hermann ;
Stirn, Andrew ;
Mendez-Mancilla, Alejandro ;
Kim, Eric J. ;
Hart, Sydney K. ;
Knowles, David A. ;
Sanjana, Neville E. .
NATURE BIOTECHNOLOGY, 2024, 42 (04) :628-637
[75]   Massively parallel Cas13 screens reveal principles for guide RNA design [J].
Wessels, Hans-Hermann ;
Mendez-Mancilla, Alejandro ;
Guo, Xinyi ;
Legut, Mateusz ;
Daniloski, Zharko ;
Sanjana, Neville E. .
NATURE BIOTECHNOLOGY, 2020, 38 (06) :722-+
[76]   A systematic analysis of the effect of target RNA structure an RNA interference [J].
Westerhout, Ellen M. ;
Berkhout, Ben .
NUCLEIC ACIDS RESEARCH, 2007, 35 (13) :4322-4330
[77]   HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome [J].
Westerhout, EM ;
Ooms, M ;
Vink, M ;
Das, AT ;
Berkhout, B .
NUCLEIC ACIDS RESEARCH, 2005, 33 (02) :796-804
[78]   The structure and functions of coronavirus genomic 3′ and 5′ ends [J].
Yang, Dong ;
Leibowitz, Julian L. .
VIRUS RESEARCH, 2015, 206 :120-133
[79]   Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System [J].
Zetsche, Bernd ;
Gootenberg, Jonathan S. ;
Abudayyeh, Omar O. ;
Slaymaker, Ian M. ;
Makarova, Kira S. ;
Essletzbichler, Patrick ;
Volz, Sara E. ;
Joung, Julia ;
van der Oost, John ;
Regev, Aviv ;
Koonin, Eugene V. ;
Zhang, Feng .
CELL, 2015, 163 (03) :759-771
[80]   Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d [J].
Zhang, Bo ;
Ye, Yangmiao ;
Ye, Weiwei ;
Perculija, Vanja ;
Jiang, Han ;
Chen, Yiyang ;
Li, Yu ;
Chen, Jing ;
Lin, Jinying ;
Wang, Siqi ;
Chen, Qi ;
Han, Yu-San ;
Ouyang, Songying .
NATURE COMMUNICATIONS, 2019, 10 (1)