Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage

被引:2
作者
Hussein, Mouraya [1 ,2 ]
Liu, Ye [1 ,2 ]
Vink, Monique [1 ,2 ]
Kroon, Pascal Z. [1 ,2 ]
Das, Atze T. [1 ,2 ]
Berkhout, Ben [1 ,2 ]
Herrera-Carrillo, Elena [1 ,2 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Med Microbiol & Infect Prevent, Meibergdreef 9, Amsterdam, Netherlands
[2] Amsterdam Inst Immunol & Infect Dis, Amsterdam, Netherlands
来源
MOLECULAR THERAPY NUCLEIC ACIDS | 2024年 / 35卷 / 03期
关键词
ANTIVIRAL STRATEGY; SARS-COV-2; RNA; CRISPR; SEQUENCES; THERAPEUTICS; REPLICATION; INHIBITION; EXPRESSION; ESCAPE; DESIGN;
D O I
10.1016/j.omtn.2024.102278
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
引用
收藏
页数:10
相关论文
共 81 条
[1]   Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza [J].
Abbott, Timothy R. ;
Dhamdhere, Girija ;
Liu, Yanxia ;
Lin, Xueqiu ;
Goudy, Laine ;
Zeng, Leiping ;
Chemparathy, Augustine ;
Chmura, Stephen ;
Heaton, Nicholas S. ;
Debs, Robert ;
Pande, Tara ;
Endy, Drew ;
La Russa, Marie F. ;
Lewis, David B. ;
Qi, Lei S. .
CELL, 2020, 181 (04) :865-+
[2]   RNA targeting with CRISPR-Cas13 [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Essletzbichler, Patrick ;
Han, Shuo ;
Joung, Julia ;
Belanto, Joseph J. ;
Verdine, Vanessa ;
Cox, David B. T. ;
Kellner, Max J. ;
Regev, Aviv ;
Lander, Eric S. ;
Voytas, Daniel F. ;
Ting, Alice Y. ;
Zhang, Feng .
NATURE, 2017, 550 (7675) :280-+
[3]   C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Konermann, Silvana ;
Joung, Julia ;
Slaymaker, Ian M. ;
Cox, David B. T. ;
Shmakov, Sergey ;
Makarova, Kira S. ;
Semenova, Ekaterina ;
Minakhin, Leonid ;
Severinov, Konstantin ;
Regev, Aviv ;
Lander, Eric S. ;
Koonin, Eugene V. ;
Zhang, Feng .
SCIENCE, 2016, 353 (6299)
[4]   A Comprehensive Analysis of cis-Acting RNA Elements in the SARS-CoV-2 Genome by a Bioinformatics Approach [J].
Ahmed, Firoz ;
Sharma, Monika ;
Al-Ghamdi, Abdulsalam Abdullah ;
Al-Yami, Sultan Muhammad ;
Al-Salami, Abdulaziz Musa ;
Refai, Mohammed Y. ;
Warsi, Mohiuddin Khan ;
Howladar, Saad M. ;
Baeshen, Mohammed N. .
FRONTIERS IN GENETICS, 2020, 11
[5]   Designing of Highly Effective Complementary and Mismatch siRNAs for Silencing a Gene [J].
Ahmed, Firoz ;
Raghava, Gajendra P. S. .
PLOS ONE, 2011, 6 (08)
[6]   siRNA: Mechanism of action, challenges, and therapeutic approaches [J].
Alshaer, Walhan ;
Zureigat, Hadil ;
Al Karaki, Arwa ;
Al-Kadash, Abdulfattah ;
Gharaibeh, Lobna ;
Hatmal, Ma'mon M. ;
Aljabali, Alaa A. A. ;
Awidi, Abdalla .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 905
[7]   Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread [J].
Ambike, Shubhankar ;
Cheng, Cho-Chin ;
Feuerherd, Martin ;
Velkov, Stoyan ;
Baldassi, Domizia ;
Afridi, Suliman Qadir ;
Porras-Gonzalez, Diana ;
Wei, Xin ;
Hagen, Philipp ;
Kneidinger, Nikolaus ;
Stoleriu, Mircea Gabriel ;
Grass, Vincent ;
Burgstaller, Gerald ;
Pichlmair, Andreas ;
Merkel, Olivia M. ;
Ko, Chunkyu ;
Michler, Thomas .
NUCLEIC ACIDS RESEARCH, 2022, 50 (01) :333-349
[8]   Molecular basis for target RNA recognition and cleavage by human RISC [J].
Ameres, Stefan Ludwig ;
Martinez, Javier ;
Schroeder, Renee .
CELL, 2007, 130 (01) :101-112
[9]  
Andrews R.J., 2020, Preprint at bioRxiv, V48, P12436
[10]   A map of the SARS-CoV-2 RNA structurome [J].
Andrews, Ryan J. ;
Peterson, Jake M. ;
Haniff, Hafeez S. ;
Chen, Jonathan ;
Williams, Christopher ;
Grefe, Maison ;
Disney, Matthew D. ;
Moss, Walter N. .
NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) :1-14